skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep Learning Identifies High-$z$ Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range

Abstract

We use machine learning to identify in color images of high-redshift galaxies an astrophysical phenomenon predicted by cosmological simulations. This phenomenon, called the blue nugget (BN) phase, is the compact star-forming phase in the central regions of many growing galaxies that follows an earlier phase of gas compaction and is followed by a central quenching phase. We train a convolutional neural network (CNN) with mock "observed" images of simulated galaxies at three phases of evolution— pre-BN, BN, and post-BN—and demonstrate that the CNN successfully retrieves the three phases in other simulated galaxies. We show that BNs are identified by the CNN within a time window of ~0.15 Hubble times. When the trained CNN is applied to observed galaxies from the CANDELS survey at $z$ = 1–3, it successfully identifies galaxies at the three phases. We find that the observed BNs are preferentially found in galaxies at a characteristic stellar mass range, 109.2–10.3 $$M_⊙$$ at all redshifts. This is consistent with the characteristic galaxy mass for BNs as detected in the simulations and is meaningful because it is revealed in the observations when the direct information concerning the total galaxy luminosity has been eliminated from the training set. This technique can be applied to the classification of other astrophysical phenomena for improved comparison of theory and observations in the era of large imaging surveys and cosmological simulations.

Authors:
 [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [7];  [8];  [9];  [10];  [9];  [11];  [12];  [13]
  1. Sorbonne Univ., Paris (France); Paris Diderot Univ. Paris (France); Inst. Univ. de France (France)
  2. Univ. of California, Santa Cruz, CA (United States). Physics Dept.
  3. Univ. of California, Santa Cruz, CA (United States). Physics Dept.; Hebrew Univ. of Jerusalem (Israel). Racah Inst. of Physics
  4. Univ. of California, Santa Cruz, CA (United States). Dept. of Astronomy and Astrophysics
  5. Hebrew Univ. of Jerusalem (Israel). Racah Inst. of Physics
  6. Heidelberg Univ. (Germany). Inst. for Theoretische Astrophysik
  7. Johns Hopkins Univ., Baltimore, MD (United States)
  8. Space Telescope Science Inst., Baltimore, MD (United States)
  9. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Physics and Astronomy
  10. Shanghai Normal Univ. (China). Shanghai Key Lab for Astrophysics
  11. Sorbonne Univ., Paris (France); Univ. of California, Santa Cruz, CA (United States). Physics Dept.
  12. Sorbonne Univ., Paris (France)
  13. Sorbonne Univ., Paris (France); PSL Research University Centre for Mathematical Morphology, Fontainebleau (France)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE
OSTI Identifier:
1544060
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 858; Journal Issue: 2; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Astronomy & Astrophysics

Citation Formats

Huertas-Company, M., Primack, J. R., Dekel, A., Koo, D. C., Lapiner, S., Ceverino, D., Simons, R. C., Snyder, G. F., Bernardi, M., Chen, Z., Domínguez-Sánchez, H., Lee, C. T., Margalef-Bentabol, B., and Tuccillo, D. Deep Learning Identifies High-$z$ Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range. United States: N. p., 2018. Web. doi:10.3847/1538-4357/aabfed.
Huertas-Company, M., Primack, J. R., Dekel, A., Koo, D. C., Lapiner, S., Ceverino, D., Simons, R. C., Snyder, G. F., Bernardi, M., Chen, Z., Domínguez-Sánchez, H., Lee, C. T., Margalef-Bentabol, B., & Tuccillo, D. Deep Learning Identifies High-$z$ Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range. United States. doi:https://doi.org/10.3847/1538-4357/aabfed
Huertas-Company, M., Primack, J. R., Dekel, A., Koo, D. C., Lapiner, S., Ceverino, D., Simons, R. C., Snyder, G. F., Bernardi, M., Chen, Z., Domínguez-Sánchez, H., Lee, C. T., Margalef-Bentabol, B., and Tuccillo, D. Thu . "Deep Learning Identifies High-$z$ Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range". United States. doi:https://doi.org/10.3847/1538-4357/aabfed. https://www.osti.gov/servlets/purl/1544060.
@article{osti_1544060,
title = {Deep Learning Identifies High-$z$ Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range},
author = {Huertas-Company, M. and Primack, J. R. and Dekel, A. and Koo, D. C. and Lapiner, S. and Ceverino, D. and Simons, R. C. and Snyder, G. F. and Bernardi, M. and Chen, Z. and Domínguez-Sánchez, H. and Lee, C. T. and Margalef-Bentabol, B. and Tuccillo, D.},
abstractNote = {We use machine learning to identify in color images of high-redshift galaxies an astrophysical phenomenon predicted by cosmological simulations. This phenomenon, called the blue nugget (BN) phase, is the compact star-forming phase in the central regions of many growing galaxies that follows an earlier phase of gas compaction and is followed by a central quenching phase. We train a convolutional neural network (CNN) with mock "observed" images of simulated galaxies at three phases of evolution— pre-BN, BN, and post-BN—and demonstrate that the CNN successfully retrieves the three phases in other simulated galaxies. We show that BNs are identified by the CNN within a time window of ~0.15 Hubble times. When the trained CNN is applied to observed galaxies from the CANDELS survey at $z$ = 1–3, it successfully identifies galaxies at the three phases. We find that the observed BNs are preferentially found in galaxies at a characteristic stellar mass range, 109.2–10.3 $M_⊙$ at all redshifts. This is consistent with the characteristic galaxy mass for BNs as detected in the simulations and is meaningful because it is revealed in the observations when the direct information concerning the total galaxy luminosity has been eliminated from the training set. This technique can be applied to the classification of other astrophysical phenomena for improved comparison of theory and observations in the era of large imaging surveys and cosmological simulations.},
doi = {10.3847/1538-4357/aabfed},
journal = {The Astrophysical Journal (Online)},
number = 2,
volume = 858,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Explanation of the 19 camera orientations used to generate mock 2D images from the simulations.

Save / Share:

Works referenced in this record:

Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate
journal, May 2005

  • Bell, Eric F.; Papovich, Casey; Wolf, Christian
  • The Astrophysical Journal, Vol. 625, Issue 1
  • DOI: 10.1086/429552

Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging
journal, October 2008

  • Buitrago, Fernando; Trujillo, Ignacio; Conselice, Christopher J.
  • The Astrophysical Journal, Vol. 687, Issue 2
  • DOI: 10.1086/592836

Can Minor Merging Account for the size Growth of Quiescent Galaxies? new Results from the Candels Survey
journal, February 2012


The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip
journal, January 2008

  • Lotz, Jennifer M.; Davis, M.; Faber, S. M.
  • The Astrophysical Journal, Vol. 672, Issue 1
  • DOI: 10.1086/523659

Evolution of density profiles in high- z galaxies: compaction and quenching inside-out
journal, February 2016

  • Tacchella, Sandro; Dekel, Avishai; Carollo, C. Marcella
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 1
  • DOI: 10.1093/mnras/stw303

Accelerating dust temperature calculations with graphics-processing units
journal, August 2010


SUNRISE: polychromatic dust radiative transfer in arbitrary geometries
journal, October 2006


CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z ∼ 2
journal, February 2013

  • Barro, Guillermo; Faber, S. M.; Pérez-González, Pablo G.
  • The Astrophysical Journal, Vol. 765, Issue 2
  • DOI: 10.1088/0004-637X/765/2/104

The role of Stellar Feedback in the Formation of Galaxies
journal, March 2009


SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass
journal, September 2002


The reversal of the star formation-density relation in the distant universe
journal, April 2007


A Critical Assessment of Photometric Redshift Methods: a Candels Investigation
journal, September 2013


The evolution of the mass–size relation for early-type galaxies from z ∼ 1 to the present: dependence on environment, mass range and detailed morphology
journal, November 2012

  • Huertas-Company, M.; Mei, S.; Shankar, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 428, Issue 2
  • DOI: 10.1093/mnras/sts150

Massive close pairs measure rapid galaxy assembly in mergers at high redshift
journal, February 2017

  • Snyder, Gregory F.; Lotz, Jennifer M.; Rodriguez-Gomez, Vicente
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 1
  • DOI: 10.1093/mnras/stx487

Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse
journal, March 2008

  • van Dokkum, Pieter G.; Franx, Marijn; Kriek, Mariska
  • The Astrophysical Journal, Vol. 677, Issue 1
  • DOI: 10.1086/587874

Improving galaxy morphologies for SDSS with Deep Learning
journal, February 2018

  • Domínguez Sánchez, H.; Huertas-Company, M.; Bernardi, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 476, Issue 3
  • DOI: 10.1093/mnras/sty338

Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets
journal, May 2015

  • Zolotov, Adi; Dekel, Avishai; Mandelker, Nir
  • Monthly Notices of the Royal Astronomical Society, Vol. 450, Issue 3
  • DOI: 10.1093/mnras/stv740

The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy
journal, July 1998

  • Dwek, Eli
  • The Astrophysical Journal, Vol. 501, Issue 2
  • DOI: 10.1086/305829

Diverse structural evolution at z  > 1 in cosmologically simulated galaxies
journal, June 2015

  • Snyder, Gregory F.; Lotz, Jennifer; Moody, Christopher
  • Monthly Notices of the Royal Astronomical Society, Vol. 451, Issue 4
  • DOI: 10.1093/mnras/stv1231

The Global Schmidt Law in Star‐forming Galaxies
journal, May 1998

  • Kennicutt, Jr., Robert C.
  • The Astrophysical Journal, Vol. 498, Issue 2
  • DOI: 10.1086/305588

GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1
journal, November 2011

  • Wuyts, Stijn; Förster Schreiber, Natascha M.; van der Wel, Arjen
  • The Astrophysical Journal, Vol. 742, Issue 2
  • DOI: 10.1088/0004-637X/742/2/96

Detailed Structural Decomposition of Galaxy Images
journal, July 2002

  • Peng, Chien Y.; Ho, Luis C.; Impey, Chris D.
  • The Astronomical Journal, Vol. 124, Issue 1
  • DOI: 10.1086/340952

Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers
journal, December 2008


Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust‐enshrouded Star Formation Rate
journal, August 2001

  • Chary, R.; Elbaz, D.
  • The Astrophysical Journal, Vol. 556, Issue 2
  • DOI: 10.1086/321609

Mass assembly and morphological transformations since z ∼ 3 from CANDELS
journal, July 2016

  • Huertas-Company, M.; Bernardi, M.; Pérez-González, P. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 462, Issue 4
  • DOI: 10.1093/mnras/stw1866

Extremely compact massive galaxies at z   1.4
journal, November 2006


Formation of elongated galaxies with low masses at high redshift
journal, August 2015

  • Ceverino, Daniel; Primack, Joel; Dekel, Avishai
  • Monthly Notices of the Royal Astronomical Society, Vol. 453, Issue 1
  • DOI: 10.1093/mnras/stv1603

Infrared Emission from Interstellar Dust. IV. The Silicate‐Graphite‐PAH Model in the Post‐ Spitzer Era
journal, March 2007

  • Draine, B. T.; Li, Aigen
  • The Astrophysical Journal, Vol. 657, Issue 2
  • DOI: 10.1086/511055

The Sloan Digital Sky Survey: Technical Summary
journal, September 2000

  • York, Donald G.; Adelman, J.; Anderson, Jr., John E.
  • The Astronomical Journal, Vol. 120, Issue 3
  • DOI: 10.1086/301513

Rotation-invariant convolutional neural networks for galaxy morphology prediction
journal, April 2015

  • Dieleman, Sander; Willett, Kyle W.; Dambre, Joni
  • Monthly Notices of the Royal Astronomical Society, Vol. 450, Issue 2
  • DOI: 10.1093/mnras/stv632

Galaxy morphology to I=25 mag in the Hubble Deep Field
journal, April 1996

  • Abraham, R. G.; Tanvir, N. R.; Santiago, B. X.
  • Monthly Notices of the Royal Astronomical Society, Vol. 279, Issue 3
  • DOI: 10.1093/mnras/279.3.L47

On the Origin of the Global Schmidt Law of Star Formation
journal, May 2003

  • Kravtsov, Andrey V.
  • The Astrophysical Journal, Vol. 590, Issue 1
  • DOI: 10.1086/376674

Galactic Stellar and Substellar Initial Mass Function
journal, July 2003

  • Chabrier, Gilles
  • Publications of the Astronomical Society of the Pacific, Vol. 115, Issue 809
  • DOI: 10.1086/376392

Structural and Star-forming Relations since z ∼ 3: Connecting Compact Star-forming and Quiescent Galaxies
journal, May 2017

  • Barro, Guillermo; Faber, S. M.; Koo, David C.
  • The Astrophysical Journal, Vol. 840, Issue 1
  • DOI: 10.3847/1538-4357/aa6b05

Candels Multi-Wavelength Catalogs: Source Detection and Photometry in the Goods-South Field
journal, July 2013

  • Guo, Yicheng; Ferguson, Henry C.; Giavalisco, Mauro
  • The Astrophysical Journal Supplement Series, Vol. 207, Issue 2
  • DOI: 10.1088/0067-0049/207/2/24

Metallicity-Dependent Quenching of star Formation at high Redshift in Small Galaxies
journal, June 2012


Evolution of galaxy shapes from prolate to oblate through compaction events
journal, March 2016

  • Tomassetti, Matteo; Dekel, Avishai; Mandelker, Nir
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 4
  • DOI: 10.1093/mnras/stw606

CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2-3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES
journal, July 2014


The Asymmetry of Galaxies: Physical Morphology for Nearby and High‐Redshift Galaxies
journal, February 2000

  • Conselice, Christopher J.; Bershady, Matthew A.; Jangren, Anna
  • The Astrophysical Journal, Vol. 529, Issue 2
  • DOI: 10.1086/308300

RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE
journal, November 2016

  • Abramson, Louis E.; Gladders, Michael D.; Dressler, Alan
  • The Astrophysical Journal, Vol. 832, Issue 1
  • DOI: 10.3847/0004-637X/832/1/7

UV-TO-FIR ANALYSIS OF SPITZER /IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS
journal, March 2011

  • Barro, Guillermo; Pérez-González, P. G.; Gallego, J.
  • The Astrophysical Journal Supplement Series, Vol. 193, Issue 1
  • DOI: 10.1088/0067-0049/193/1/13

The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment
journal, February 2016

  • Tacchella, Sandro; Dekel, Avishai; Carollo, C. Marcella
  • Monthly Notices of the Royal Astronomical Society, Vol. 457, Issue 3
  • DOI: 10.1093/mnras/stw131

High-resolution panchromatic spectral models of galaxies including photoionization and dust
journal, March 2010


A PHYSICAL APPROACH TO THE IDENTIFICATION OF HIGH- Z MERGERS: MORPHOLOGICAL CLASSIFICATION IN THE STELLAR MASS DOMAIN
journal, June 2015


Surface Density Effects in Quenching: Cause or Effect?
journal, December 2016


Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang
journal, April 2015


A Catalog of Visual-Like Morphologies in the 5 Candels Fields Using deep Learning
journal, October 2015

  • Huertas-Company, M.; Gravet, R.; Cabrera-Vives, G.
  • The Astrophysical Journal Supplement Series, Vol. 221, Issue 1
  • DOI: 10.1088/0067-0049/221/1/8

Deep learning for galaxy surface brightness profile fitting
journal, December 2017

  • Tuccillo, D.; Huertas-Company, M.; Decencière, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 1
  • DOI: 10.1093/mnras/stx3186

CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS
journal, December 2011

  • Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.
  • The Astrophysical Journal Supplement Series, Vol. 197, Issue 2
  • DOI: 10.1088/0067-0049/197/2/36

Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift
journal, June 2014

  • Ceverino, Daniel; Klypin, Anatoly; Klimek, Elizabeth S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 2
  • DOI: 10.1093/mnras/stu956

Candels: the Cosmic Assembly Near-Infrared deep Extragalactic Legacy Survey
journal, December 2011

  • Grogin, Norman A.; Kocevski, Dale D.; Faber, S. M.
  • The Astrophysical Journal Supplement Series, Vol. 197, Issue 2
  • DOI: 10.1088/0067-0049/197/2/35

Formation of Massive Galaxies at high Redshift: cold Streams, Clumpy Disks, and Compact Spheroids
journal, September 2009


Newly Quenched Galaxies as the Cause for the Apparent Evolution in Average size of the Population
journal, August 2013


Adaptive Refinement Tree: A New High‐Resolution N ‐Body Code for Cosmological Simulations
journal, July 1997

  • Kravtsov, Andrey V.; Klypin, Anatoly A.; Khokhlov, Alexei M.
  • The Astrophysical Journal Supplement Series, Vol. 111, Issue 1
  • DOI: 10.1086/313015

    Works referencing / citing this record:

    Surveying the reach and maturity of machine learning and artificial intelligence in astronomy
    journal, September 2019

    • Fluke, Christopher J.; Jacobs, Colin
    • WIREs Data Mining and Knowledge Discovery, Vol. 10, Issue 2
    • DOI: 10.1002/widm.1349

    Morphology-assisted galaxy mass-to-light predictions using deep learning
    journal, April 2019


    Deep learning: A guide for practitioners in the physical sciences
    journal, August 2018

    • Spears, Brian K.; Brase, James; Bremer, Peer-Timo
    • Physics of Plasmas, Vol. 25, Issue 8
    • DOI: 10.1063/1.5020791

    Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation
    journal, April 2019

    • Snyder, Gregory F.; Rodriguez-Gomez, Vicente; Lotz, Jennifer M.
    • Monthly Notices of the Royal Astronomical Society, Vol. 486, Issue 3
    • DOI: 10.1093/mnras/stz1059

    The structural properties of classical bulges and discs from z ∼ 2
    journal, September 2019

    • Dimauro, Paola; Huertas-Company, Marc; Daddi, Emanuele
    • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 3
    • DOI: 10.1093/mnras/stz2421

    Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning
    journal, October 2019

    • Walmsley, Mike; Smith, Lewis; Lintott, Chris
    • Monthly Notices of the Royal Astronomical Society, Vol. 491, Issue 2
    • DOI: 10.1093/mnras/stz2816

    Photometry of high-redshift blended galaxies using deep learning
    journal, December 2019

    • Boucaud, Alexandre; Huertas-Company, Marc; Heneka, Caroline
    • Monthly Notices of the Royal Astronomical Society, Vol. 491, Issue 2
    • DOI: 10.1093/mnras/stz3056

    Using convolutional neural networks to predict galaxy metallicity from three-colour images
    journal, February 2019

    • Wu, John F.; Boada, Steven
    • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 4
    • DOI: 10.1093/mnras/stz333

    The evolution of galaxy shapes in CANDELS: from prolate to discy
    journal, February 2019

    • Zhang, Haowen; Primack, Joel R.; Faber, S. M.
    • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 4
    • DOI: 10.1093/mnras/stz339

    Forging new worlds: high-resolution synthetic galaxies with chained generative adversarial networks
    journal, March 2019

    • Fussell, Levi; Moews, Ben
    • Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 3
    • DOI: 10.1093/mnras/stz602

    Studying the physical properties of tidal features – I. Extracting morphological substructure in CANDELS observations and VELA simulations
    journal, March 2019

    • Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Ciaschi, Cody P.
    • Monthly Notices of the Royal Astronomical Society, Vol. 486, Issue 2
    • DOI: 10.1093/mnras/stz872

    Deep reinforcement learning for quantum Szilard engine optimization
    journal, October 2019


    Distinguishing Mergers and Disks in High-redshift Observations of Galaxy Kinematics
    journal, March 2019

    • Simons, Raymond C.; Kassin, Susan A.; Snyder, Gregory F.
    • The Astrophysical Journal, Vol. 874, Issue 1
    • DOI: 10.3847/1538-4357/ab07c9

    CASI: A Convolutional Neural Network Approach for Shell Identification
    journal, July 2019

    • Van Oort, Colin M.; Xu, Duo; Offner, Stella S. R.
    • The Astrophysical Journal, Vol. 880, Issue 2
    • DOI: 10.3847/1538-4357/ab275e