skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Full- f version of GENE for turbulence in open-field-line systems

Abstract

Exclusive properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma–wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. Thus, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The significant extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard–Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [5]
  1. Univ. of California, Los Angeles, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Max Planck Inst. for Plasma Physics, Garching (Germany)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  5. Univ. of California, Los Angeles, CA (United States); Max Planck Inst. for Plasma Physics, Garching (Germany)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States); Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1543849
Alternate Identifier(s):
OSTI ID: 1439757
Grant/Contract Number:  
AC02-05CH11231; AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 6; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Pan, Q., Told, D., Shi, E. L., Hammett, G. W., and Jenko, F. Full- f version of GENE for turbulence in open-field-line systems. United States: N. p., 2018. Web. doi:10.1063/1.5008895.
Pan, Q., Told, D., Shi, E. L., Hammett, G. W., & Jenko, F. Full- f version of GENE for turbulence in open-field-line systems. United States. doi:10.1063/1.5008895.
Pan, Q., Told, D., Shi, E. L., Hammett, G. W., and Jenko, F. Thu . "Full- f version of GENE for turbulence in open-field-line systems". United States. doi:10.1063/1.5008895. https://www.osti.gov/servlets/purl/1543849.
@article{osti_1543849,
title = {Full- f version of GENE for turbulence in open-field-line systems},
author = {Pan, Q. and Told, D. and Shi, E. L. and Hammett, G. W. and Jenko, F.},
abstractNote = {Exclusive properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma–wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. Thus, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The significant extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard–Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.},
doi = {10.1063/1.5008895},
journal = {Physics of Plasmas},
number = 6,
volume = 25,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Progress in Kinetic Simulation of Edge Plasmas
journal, March 2008


Electromagnetic gyrokinetic simulations
journal, May 2004

  • Parker, S. E.; Chen, Y.; Wan, W.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1689668

An Eulerian gyrokinetic-Maxwell solver
journal, April 2003


Nonlinear instability in simulations of Large Plasma Device turbulence
journal, May 2013

  • Friedman, B.; Carter, T. A.; Umansky, M. V.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4805084

The global version of the gyrokinetic turbulence code GENE
journal, August 2011

  • Görler, T.; Lapillonne, X.; Brunner, S.
  • Journal of Computational Physics, Vol. 230, Issue 18
  • DOI: 10.1016/j.jcp.2011.05.034

Relevance of the parallel nonlinearity in gyrokinetic simulations of tokamak plasmas
journal, July 2006

  • Candy, J.; Waltz, R. E.; Parker, S. E.
  • Physics of Plasmas, Vol. 13, Issue 7
  • DOI: 10.1063/1.2220536

A Suitable Boundary Condition for Bounded Plasma Simulation without Sheath Resolution
journal, January 1993

  • Parker, S. E.; Procassini, R. J.; Birdsall, C. K.
  • Journal of Computational Physics, Vol. 104, Issue 1
  • DOI: 10.1006/jcph.1993.1005

Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma
journal, May 2017


Nonlinear gyrokinetic equations for turbulence in core transport barriers
journal, December 1996


Electron temperature gradient driven turbulence
journal, May 2000

  • Jenko, F.; Dorland, W.; Kotschenreuther, M.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874014

Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device
journal, October 2010

  • Popovich, P.; Umansky, M. V.; Carter, T. A.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3500283

Edge turbulence measurements in toroidal fusion devices
journal, June 2007


Corrections to a sequence of papers in Nuclear Fusion
journal, August 2008


Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation
journal, August 2017

  • Churchill, R. M.; Chang, C. S.; Ku, S.
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 10
  • DOI: 10.1088/1361-6587/aa7c03

Numerical techniques for parallel dynamics in electromagnetic gyrokinetic Vlasov simulations
journal, November 2013

  • Maeyama, S.; Ishizawa, A.; Watanabe, T. -H.
  • Computer Physics Communications, Vol. 184, Issue 11
  • DOI: 10.1016/j.cpc.2013.06.014

A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
journal, June 2016


Design, construction, and properties of the large plasma research device−The LAPD at UCLA
journal, December 1991

  • Gekelman, W.; Pfister, H.; Lucky, Z.
  • Review of Scientific Instruments, Vol. 62, Issue 12
  • DOI: 10.1063/1.1142175

Nonlinear gyrokinetic equations
journal, January 1983

  • Dubin, Daniel H. E.
  • Physics of Fluids, Vol. 26, Issue 12
  • DOI: 10.1063/1.864113

A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma
journal, June 2016


Electron Temperature Gradient Turbulence
journal, December 2000


Anomalous Transport Scaling in the DIII-D Tokamak Matched by Supercomputer Simulation
journal, July 2003


Modeling of plasma turbulence and transport in the Large Plasma Device
journal, December 2010

  • Popovich, P.; Umansky, M. V.; Carter, T. A.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3527987

Intermittent turbulence and turbulent structures in a linear magnetized plasma
journal, January 2006


Low-Frequency Turbulence in a Linear Magnetized Plasma
journal, June 2010


Global Nonlinear Electromagnetic Simulations of Tokamak Turbulence
journal, September 2010

  • Bottino, Alberto; Scott, Bruce; Brunner, Stephan
  • IEEE Transactions on Plasma Science, Vol. 38, Issue 9
  • DOI: 10.1109/TPS.2010.2055583

Quantitative predictions of tokamak energy confinement from first‐principles simulations with kinetic effects
journal, June 1995

  • Kotschenreuther, M.; Dorland, W.; Beer, M. A.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871261

Plasma Oscillations with Diffusion in Velocity Space
journal, December 1958


Geometric gyrokinetic theory for edge plasmas
journal, May 2007

  • Qin, H.; Cohen, R. H.; Nevins, W. M.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2472596

Simulation of neoclassical transport with the continuum gyrokinetic code COGENT
journal, January 2013

  • Dorf, M. A.; Cohen, R. H.; Dorr, M.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4776712

The nonlinear gyro-kinetic flux tube code GKW
journal, December 2009

  • Peeters, A. G.; Camenen, Y.; Casson, F. J.
  • Computer Physics Communications, Vol. 180, Issue 12
  • DOI: 10.1016/j.cpc.2009.07.001

A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse
journal, February 2015

  • Shi, E. L.; Hakim, A. H.; Hammett, G. W.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907160

Continuum kinetic modeling of the tokamak plasma edge
journal, May 2016

  • Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943106

Three-dimensional two-fluid Braginskii simulations of the large plasma device
journal, September 2015

  • Fisher, Dustin M.; Rogers, Barrett N.; Rossi, Giovanni D.
  • Physics of Plasmas, Vol. 22, Issue 9
  • DOI: 10.1063/1.4931090

High-order, finite-volume methods in mapped coordinates
journal, April 2011

  • Colella, P.; Dorr, M. R.; Hittinger, J. A. F.
  • Journal of Computational Physics, Vol. 230, Issue 8
  • DOI: 10.1016/j.jcp.2010.12.044

Fully nonlinear δf gyrokinetics for scrape-off layer parallel transport
journal, October 2016

  • Pan, Q.; Told, D.; Jenko, F.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4964666

Chapter 2: Plasma confinement and transport
journal, June 2007

  • Physics), E. J. Doyle (Chair Transport; Modelling), W. A. Houlberg (Chair Confinement Da; Edge), Y. Kamada (Chair Pedestal and
  • Nuclear Fusion, Vol. 47, Issue 6
  • DOI: 10.1088/0029-5515/47/6/S02

Energy dynamics in a simulation of LAPD turbulence
journal, October 2012

  • Friedman, B.; Carter, T. A.; Umansky, M. V.
  • Physics of Plasmas, Vol. 19, Issue 10
  • DOI: 10.1063/1.4759010

Gyrokinetic full-torus simulations of ohmic tokamak plasmas in circular limiter configuration
journal, June 2016


    Works referencing / citing this record:

    Electromagnetic full- gyrokinetics in the tokamak edge with discontinuous Galerkin methods
    journal, February 2020


    Linear theory of electron-plasma waves at arbitrary collisionality
    journal, April 2019


    Nonlinear gyrokinetic Coulomb collision operator
    journal, November 2019


    Full- f gyrokinetic simulation of turbulence in a helical open-field-line plasma
    journal, January 2019

    • Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.
    • Physics of Plasmas, Vol. 26, Issue 1
    • DOI: 10.1063/1.5074179

    Gyrokinetic full-f particle-in-cell simulations on open field lines with PICLS
    journal, December 2019

    • Boesl, M.; Bergmann, A.; Bottino, A.
    • Physics of Plasmas, Vol. 26, Issue 12
    • DOI: 10.1063/1.5121262

    Theory of the Drift-Wave Instability at Arbitrary Collisionality
    journal, October 2018