skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath

Abstract

Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth’s turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, butmore » unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [1];  [8];  [9];  [10];  [11];  [11];  [12];  [3];  [3];  [13];  [14];  [6];  [1] more »;  [15];  [16];  [16];  [9];  [11];  [11];  [15];  [17];  [17];  [18];  [19] « less
  1. Univ. of California, Berkeley, CA (United States)
  2. Imperial College, London (United Kingdom)
  3. Univ. of Delaware, Newark, DE (United States)
  4. Univ. of Maryland, College Park, MD (United States)
  5. Dartmouth College, Hanover, NH (United States)
  6. ISAS/JAXA, Sagamihara (Japan)
  7. West Virginia Univ., Morgantown, WV (United States)
  8. Southwest Research Inst. (SwRI), San Antonio, TX (United States)
  9. Univ. of New Hampshire, Durham, NH (United States)
  10. The Catholic Univ. of America, Washington, DC (United States); NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  11. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  12. Denali Scientific, Healy, AK (United States)
  13. Swedish Inst. of Space Physics, Uppsala (Sweden)
  14. Univ. de Toulouse (France)
  15. Univ. of Colorado, Boulder, CO (United States)
  16. Ecole Polytechnique, Paris(France)
  17. Univ. of California, Los Angeles, CA (United States)
  18. KTH Royal Inst. of Technology, Stockholm (Sweden)
  19. Austrian Academy of Sciences, Graz (Austria)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE
OSTI Identifier:
1543769
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 557; Journal Issue: 7704; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Science & Technology - Other Topics

Citation Formats

Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., Cassak, P. A., Øieroset, M., Burch, J. L., Torbert, R. B., Rager, A. C., Dorelli, J. C., Gershman, D. J., Pollock, C., Pyakurel, P. S., Haggerty, C. C., Khotyaintsev, Y., Lavraud, B., Saito, Y., Oka, M., Ergun, R. E., Retino, A., Le Contel, O., Argall, M. R., Giles, B. L., Moore, T. E., Wilder, F. D., Strangeway, R. J., Russell, C. T., Lindqvist, P. A., and Magnes, W. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. United States: N. p., 2018. Web. doi:10.1038/s41586-018-0091-5.
Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., Cassak, P. A., Øieroset, M., Burch, J. L., Torbert, R. B., Rager, A. C., Dorelli, J. C., Gershman, D. J., Pollock, C., Pyakurel, P. S., Haggerty, C. C., Khotyaintsev, Y., Lavraud, B., Saito, Y., Oka, M., Ergun, R. E., Retino, A., Le Contel, O., Argall, M. R., Giles, B. L., Moore, T. E., Wilder, F. D., Strangeway, R. J., Russell, C. T., Lindqvist, P. A., & Magnes, W. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. United States. doi:10.1038/s41586-018-0091-5.
Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., Cassak, P. A., Øieroset, M., Burch, J. L., Torbert, R. B., Rager, A. C., Dorelli, J. C., Gershman, D. J., Pollock, C., Pyakurel, P. S., Haggerty, C. C., Khotyaintsev, Y., Lavraud, B., Saito, Y., Oka, M., Ergun, R. E., Retino, A., Le Contel, O., Argall, M. R., Giles, B. L., Moore, T. E., Wilder, F. D., Strangeway, R. J., Russell, C. T., Lindqvist, P. A., and Magnes, W. Wed . "Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath". United States. doi:10.1038/s41586-018-0091-5. https://www.osti.gov/servlets/purl/1543769.
@article{osti_1543769,
title = {Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath},
author = {Phan, T. D. and Eastwood, J. P. and Shay, M. A. and Drake, J. F. and Sonnerup, B. U. Ö. and Fujimoto, M. and Cassak, P. A. and Øieroset, M. and Burch, J. L. and Torbert, R. B. and Rager, A. C. and Dorelli, J. C. and Gershman, D. J. and Pollock, C. and Pyakurel, P. S. and Haggerty, C. C. and Khotyaintsev, Y. and Lavraud, B. and Saito, Y. and Oka, M. and Ergun, R. E. and Retino, A. and Le Contel, O. and Argall, M. R. and Giles, B. L. and Moore, T. E. and Wilder, F. D. and Strangeway, R. J. and Russell, C. T. and Lindqvist, P. A. and Magnes, W.},
abstractNote = {Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth’s turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.},
doi = {10.1038/s41586-018-0091-5},
journal = {Nature (London)},
number = 7704,
volume = 557,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Turbulent magnetic reconnection
journal, January 1986

  • Matthaeus, W. H.; Lamkin, S. L.
  • Physics of Fluids, Vol. 29, Issue 8
  • DOI: 10.1063/1.866004

Magnetopause structure and attitude from Explorer 12 observations
journal, January 1967


Electron Heating at Kinetic Scales in Magnetosheath Turbulence
journal, February 2017

  • Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.
  • The Astrophysical Journal, Vol. 836, Issue 2
  • DOI: 10.3847/1538-4357/836/2/247

Extended magnetic reconnection at the Earth's magnetopause from detection of bi-directional jets
journal, April 2000

  • Phan, T. D.; Kistler, L. M.; Klecker, B.
  • Nature, Vol. 404, Issue 6780
  • DOI: 10.1038/35009050

Dissipation in Turbulent Plasma due to Reconnection in Thin Current Sheets
journal, July 2007


Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath: CURRENT SHEETS IN THE MAGNETOSHEATH
journal, June 2016

  • Yordanova, E.; Vörös, Z.; Varsani, A.
  • Geophysical Research Letters, Vol. 43, Issue 12
  • DOI: 10.1002/2016GL069191

The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products
journal, November 2014


Electron heating during magnetic reconnection: A simulation scaling study
journal, December 2014

  • Shay, M. A.; Haggerty, C. C.; Phan, T. D.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4904203

A study on the nighttime midlatitude ionospheric trough: MIDLATITUDE IONOSPHERIC TROUGH
journal, May 2011

  • He, Maosheng; Liu, Libo; Wan, Weixing
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A5
  • DOI: 10.1029/2010JA016252

Magnetic Reconnection in the Solar wind at Current Sheets Associated with Extremely Small Field Shear Angles
journal, January 2013


Electron-scale measurements of magnetic reconnection in space
journal, May 2016


New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
journal, May 2011


Evidence for an Elongated ( > 60 Ion Skin Depths) Electron Diffusion Region during Fast Magnetic Reconnection
journal, December 2007


Magnetic reconnection at the dayside magnetopause: Advances with MMS: MAGNETOPAUSE RECONNECTION WITH MMS
journal, August 2016

  • Burch, J. L.; Phan, T. D.
  • Geophysical Research Letters, Vol. 43, Issue 16
  • DOI: 10.1002/2016GL069787

Transition to whistler mediated magnetic reconnection
journal, January 1994

  • Mandt, M. E.; Denton, R. E.; Drake, J. F.
  • Geophysical Research Letters, Vol. 21, Issue 1
  • DOI: 10.1029/93GL03382

Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence
journal, October 2017

  • Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.5001722

Structure of the dissipation region during collisionless magnetic reconnection
journal, May 1998

  • Shay, M. A.; Drake, J. F.; Denton, R. E.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A5
  • DOI: 10.1029/97JA03528

Multipoint Measurements of the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field
journal, June 2017


In situ evidence of magnetic reconnection in turbulent plasma
journal, March 2007

  • Retinò, A.; Sundkvist, D.; Vaivads, A.
  • Nature Physics, Vol. 3, Issue 4
  • DOI: 10.1038/nphys574

Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code
journal, March 2001

  • Pritchett, P. L.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A3
  • DOI: 10.1029/1999JA001006

Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration: KINETIC STRUCTURE AND ACCELERATION AT MSH JET
journal, October 2016

  • Eriksson, E.; Vaivads, A.; Graham, D. B.
  • Journal of Geophysical Research: Space Physics, Vol. 121, Issue 10
  • DOI: 10.1002/2016JA023146

Magnetic Reconnection in Two-Dimensional Magnetohydrodynamic Turbulence
journal, March 2009


Theoretical models of magnetic field line merging
journal, January 1975


MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath: RECONNECTION IN THE MAGNETOSHEATH
journal, November 2017

  • Vörös, Z.; Yordanova, E.; Varsani, A.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 11
  • DOI: 10.1002/2017JA024535

Plasma acceleration at the Earth's magnetopause: evidence for reconnection
journal, November 1979

  • Paschmann, G.; Sonnerup, B. U. Ö.; Papamastorakis, I.
  • Nature, Vol. 282, Issue 5736
  • DOI: 10.1038/282243a0

Direct evidence for magnetic reconnection in the solar wind near 1 AU
journal, January 2005


    Works referencing / citing this record:

    Evidence of Magnetic Nulls in the Reconnection at Bow Shock
    journal, September 2019

    • Chen, Z. Z.; Fu, H. S.; Wang, Z.
    • Geophysical Research Letters, Vol. 46, Issue 17-18
    • DOI: 10.1029/2019gl084360

    Effective Resistivity in Collisionless Magnetic Reconnection
    journal, July 2018


    Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth’s Magnetosheath
    journal, June 2019

    • Stawarz, J. E.; Eastwood, J. P.; Phan, T. D.
    • The Astrophysical Journal, Vol. 877, Issue 2
    • DOI: 10.3847/2041-8213/ab21c8