skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La 0.5Sr 1.5Ni 1–xFe xO 4±δ Ruddlesden-Popper oxides

Abstract

The electrolysis of water is of global importance to store renewable energy and the methodical design of next-generation oxygen evolution catalysts requires a greater understanding of the structural and electronic contributions that give rise to increased activities. Herein, we report a series of Ruddlesden–Popper La 0.5Sr 1.5Ni 1–xFe xO 4±δ oxides that promote charge transfer via cross-gap hybridization to enhance electrocatalytic water splitting. Using selective substitution of lanthanum with strontium and nickel with iron to tune the extent to which transition metal and oxygen valence bands hybridize, we demonstrate remarkable catalytic activity of 10 mA cm –2 at a 360 mV overpotential and mass activity of 1930 mA mg –1 ox at 1.63 V via a mechanism that utilizes lattice oxygen. This work demonstrates that Ruddlesden–Popper materials can be utilized as active catalysts for oxygen evolution through rational design of structural and electronic configurations that are unattainable in many other crystalline metal oxide phases.

Authors:
 [1];  [1];  [2];  [3];  [4];  [1];  [5];  [1];  [2];  [1]; ORCiD logo [3]
  1. The Univ. of Texas at Austin, Austin, TX (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Skolkovo Inst. of Science and Technology, Moscow (Russia)
  4. Moscow State Univ., Moscow (Russia)
  5. The Univ. of Texas at Austin, Austin, TX (United States); Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE
OSTI Identifier:
1543747
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Science & Technology; Other Topics

Citation Formats

Forslund, Robin P., Hardin, William G., Rong, Xi, Abakumov, Artem M., Filimonov, Dmitry, Alexander, Caleb T., Mefford, J. Tyler, Iyer, Hrishikesh, Kolpak, Alexie M., Johnston, Keith P., and Stevenson, Keith J. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1–xFexO4±δ Ruddlesden-Popper oxides. United States: N. p., 2018. Web. doi:10.1038/s41467-018-05600-y.
Forslund, Robin P., Hardin, William G., Rong, Xi, Abakumov, Artem M., Filimonov, Dmitry, Alexander, Caleb T., Mefford, J. Tyler, Iyer, Hrishikesh, Kolpak, Alexie M., Johnston, Keith P., & Stevenson, Keith J. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1–xFexO4±δ Ruddlesden-Popper oxides. United States. doi:10.1038/s41467-018-05600-y.
Forslund, Robin P., Hardin, William G., Rong, Xi, Abakumov, Artem M., Filimonov, Dmitry, Alexander, Caleb T., Mefford, J. Tyler, Iyer, Hrishikesh, Kolpak, Alexie M., Johnston, Keith P., and Stevenson, Keith J. Wed . "Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1–xFexO4±δ Ruddlesden-Popper oxides". United States. doi:10.1038/s41467-018-05600-y. https://www.osti.gov/servlets/purl/1543747.
@article{osti_1543747,
title = {Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1–xFexO4±δ Ruddlesden-Popper oxides},
author = {Forslund, Robin P. and Hardin, William G. and Rong, Xi and Abakumov, Artem M. and Filimonov, Dmitry and Alexander, Caleb T. and Mefford, J. Tyler and Iyer, Hrishikesh and Kolpak, Alexie M. and Johnston, Keith P. and Stevenson, Keith J.},
abstractNote = {The electrolysis of water is of global importance to store renewable energy and the methodical design of next-generation oxygen evolution catalysts requires a greater understanding of the structural and electronic contributions that give rise to increased activities. Herein, we report a series of Ruddlesden–Popper La0.5Sr1.5Ni1–xFexO4±δ oxides that promote charge transfer via cross-gap hybridization to enhance electrocatalytic water splitting. Using selective substitution of lanthanum with strontium and nickel with iron to tune the extent to which transition metal and oxygen valence bands hybridize, we demonstrate remarkable catalytic activity of 10 mA cm–2 at a 360 mV overpotential and mass activity of 1930 mA mg–1ox at 1.63 V via a mechanism that utilizes lattice oxygen. This work demonstrates that Ruddlesden–Popper materials can be utilized as active catalysts for oxygen evolution through rational design of structural and electronic configurations that are unattainable in many other crystalline metal oxide phases.},
doi = {10.1038/s41467-018-05600-y},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe 4+ by Mössbauer Spectroscopy
journal, November 2015

  • Chen, Jamie Y. C.; Dang, Lianna; Liang, Hanfeng
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b10699

Electronic structure of possible nickelate analogs to the cuprates
journal, March 1999


High Pressure Synthesis of SrFe<sub>1−</sub><i><sub>x</sub></i>Ni<i><sub>x</sub></i>O<sub>3</sub>
journal, January 2016

  • Seki, Hayato; Saito, Takashi; Shimakawa, Yuichi
  • Journal of the Japan Society of Powder and Powder Metallurgy, Vol. 63, Issue 7
  • DOI: 10.2497/jjspm.63.609

Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH
journal, January 2017

  • Görlin, Mikaela; Ferreira de Araújo, Jorge; Schmies, Henrike
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b12250

Electronic Structure of the (Undoped and Fe-Doped) NiOOH O 2 Evolution Electrocatalyst
journal, August 2016


Mechanism of oxygen evolution on perovskites
journal, July 1983

  • Bockris, John O'M.; Otagawa, Takaaki
  • The Journal of Physical Chemistry, Vol. 87, Issue 15
  • DOI: 10.1021/j100238a048

Effects of strain, d -band filling, and oxidation state on the surface electronic structure and reactivity of 3 d perovskite surfaces
journal, August 2012

  • Akhade, Sneha A.; Kitchin, John R.
  • The Journal of Chemical Physics, Vol. 137, Issue 8
  • DOI: 10.1063/1.4746117

Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap
journal, April 1992


First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba 1−x Sr x Co 1−y Fe y O 3−δ Perovskites
journal, January 2011

  • Merkle, Rotraut; Mastrikov, Yuri A.; Kotomin, Eugene A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2
  • DOI: 10.1149/2.077202jes

Origin of ferroelectricity in perovskite oxides
journal, July 1992


Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts
journal, March 2016

  • Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11053

Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1.6)
journal, March 1990


Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
journal, July 2017

  • Fabbri, Emiliana; Nachtegaal, Maarten; Binninger, Tobias
  • Nature Materials, Vol. 16, Issue 9
  • DOI: 10.1038/nmat4938

A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1, 2 and 3), for solid-oxide fuel-cell cathode applications
journal, May 2006


Synthesis and Characteristics of Complex Multicomponent Oxides Prepared by Polymer Complex Method
journal, July 1999

  • Kakihana, Masato; Yoshimura, Masahiro
  • Bulletin of the Chemical Society of Japan, Vol. 72, Issue 7
  • DOI: 10.1246/bcsj.72.1427

Solid state chemistry of Ruddlesden-Popper type complex oxides
journal, October 1998

  • Sharma, Indu Bhushan; Singh, Devinder
  • Bulletin of Materials Science, Vol. 21, Issue 5
  • DOI: 10.1007/BF02744920

Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden–Popper Phases and Correlations to First-Principles Descriptors
journal, January 2016

  • Lee, Yueh-Lin; Lee, Dongkyu; Wang, Xiao Renshaw
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 2
  • DOI: 10.1021/acs.jpclett.5b02423

Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis
journal, September 2015


Earth-Abundant Heterogeneous Water Oxidation Catalysts
journal, October 2016


Covalency-reinforced oxygen evolution reaction catalyst
journal, September 2015

  • Yagi, Shunsuke; Yamada, Ikuya; Tsukasaki, Hirofumi
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9249

High activity and durability of novel perovskite electrocatalysts for water oxidation
journal, January 2015

  • Zhou, Wei; Zhao, Mingwen; Liang, Fengli
  • Materials Horizons, Vol. 2, Issue 5
  • DOI: 10.1039/C5MH00096C

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in La 1-x Sr x FeO 3-δ ( x = 0, 0.25, 0.50)
journal, July 2013

  • Ritzmann, Andrew M.; Muñoz-García, Ana B.; Pavone, Michele
  • Chemistry of Materials, Vol. 25, Issue 15
  • DOI: 10.1021/cm401052w

Correlation of Oxidation States in LaFexNi1-xO3+δ Oxides with Catalytic Activity for H2O2 Decomposition
journal, October 2001

  • Falcón, H.; Carbonio, R. E.; Fierro, J. L. G.
  • Journal of Catalysis, Vol. 203, Issue 2
  • DOI: 10.1006/jcat.2001.3351

An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013

  • Louie, Mary W.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405351s

Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions
journal, June 2014

  • Hardin, William G.; Mefford, J. Tyler; Slanac, Daniel A.
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm403785q

Electrochemical oxygen intercalation in La2NiO4 + $delta; crystals
journal, July 1996


La2−2xSr2xNi1−xFexO4−(x2) + δ: Magnetic and electron transport properties
journal, January 1989


Homogeneity range, oxygen nonstoichiometry, thermal expansion and transport properties of La 2−x Sr x Ni 1−y Fe y O 4+δ
journal, January 2016

  • Gilev, A. R.; Kiselev, E. A.; Cherepanov, V. A.
  • RSC Advances, Vol. 6, Issue 77
  • DOI: 10.1039/C6RA13335E

The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes
journal, January 1987

  • Corrigan, Dennis A.
  • Journal of The Electrochemical Society, Vol. 134, Issue 2
  • DOI: 10.1149/1.2100463

NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes
journal, July 2016


Effect of lanthanum replacement by strontium in lanthanum nickelate crystals synthetized using gelatin as organic precursor
journal, December 2010


Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Electronic structure, reactivity and solid-state chemistry of La 2 –x Sr x Ni 1 –y Fe y O 4 +δ
journal, January 1996

  • Howlett, Julian F.; Flavell, Wendy R.; Thomas, Andrew G.
  • Faraday Discuss., Vol. 105
  • DOI: 10.1039/FD9960500337

Synthesis of SrNiO3 and related compound, Sr2Ni2O5
journal, May 1972


A comparative study of the magnetic and electrical properties of perovskite oxides and the corresponding two-dimensional oxides of K2NiF4 structure
journal, January 1988


In-situ Moessbauer study of redox processes in a composite hydroxide of iron and nickel
journal, September 1987

  • Corrigan, Dennis A.; Conell, Robert S.; Fierro, Cristian A.
  • The Journal of Physical Chemistry, Vol. 91, Issue 19
  • DOI: 10.1021/j100303a024

Synthesis, Structure, and Properties of Ln4Ni3O10-δ (Ln = La, Pr, and Nd)
journal, July 1995


SrNb 0.1 Co 0.7 Fe 0.2 O 3− δ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution
journal, February 2015


Nanostructured LaNiO 3 Perovskite Electrocatalyst for Enhanced Urea Oxidation
journal, July 2016

  • Forslund, Robin P.; Mefford, J. Tyler; Hardin, William G.
  • ACS Catalysis, Vol. 6, Issue 8
  • DOI: 10.1021/acscatal.6b00487

Tailoring the Co 3d-O 2p Covalency in LaCoO 3 by Fe Substitution To Promote Oxygen Evolution Reaction
journal, November 2017


Low-Temperature Electron Transport Properties of La2-xSrxNiO4 with 0.5 ≤ x ≤ 1.3
journal, July 1994


Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes
journal, June 2014

  • Mefford, J. Tyler; Hardin, William G.; Dai, Sheng
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4000

Synthesis, crystal chemistry and physical properties of the Ruddlesden–Popper phases Sr3Fe2−xNixO7−δ (0⩽x⩽1.0)
journal, May 2005

  • Mogni, Liliana; Prado, Fernando; Ascolani, Hugo
  • Journal of Solid State Chemistry, Vol. 178, Issue 5
  • DOI: 10.1016/j.jssc.2005.02.018

A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution
journal, January 2016