skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A thermostable Cas9 with increased lifetime in human plasma

Abstract

CRISPR-Cas9 is a powerful technology that has enabled genome editing in a wide range of species. However, the currently developed Cas9 homologs all originate from mesophilic bacteria, making them susceptible to degradation and unsuitable for applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at temperatures up to 70 °C, compared to 45 °C for Streptococcus pyogenes Cas9 (SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We also found that GeoCas9 is an effective tool for editing mammalian genomes when delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in human plasma, the thermostable GeoCas9 provides the foundation for improved RNP delivery in vivo and expands the temperature range of CRISPR-Cas9.

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [1];  [2]; ORCiD logo [3]
  1. Univ. of California, Berkeley, CA (United States)
  2. USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE
OSTI Identifier:
1543743
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Science & Technology; Other Topics

Citation Formats

Harrington, Lucas B., Paez-Espino, David, Staahl, Brett T., Chen, Janice S., Ma, Enbo, Kyrpides, Nikos C., and Doudna, Jennifer A. A thermostable Cas9 with increased lifetime in human plasma. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01408-4.
Harrington, Lucas B., Paez-Espino, David, Staahl, Brett T., Chen, Janice S., Ma, Enbo, Kyrpides, Nikos C., & Doudna, Jennifer A. A thermostable Cas9 with increased lifetime in human plasma. United States. doi:10.1038/s41467-017-01408-4.
Harrington, Lucas B., Paez-Espino, David, Staahl, Brett T., Chen, Janice S., Ma, Enbo, Kyrpides, Nikos C., and Doudna, Jennifer A. Fri . "A thermostable Cas9 with increased lifetime in human plasma". United States. doi:10.1038/s41467-017-01408-4. https://www.osti.gov/servlets/purl/1543743.
@article{osti_1543743,
title = {A thermostable Cas9 with increased lifetime in human plasma},
author = {Harrington, Lucas B. and Paez-Espino, David and Staahl, Brett T. and Chen, Janice S. and Ma, Enbo and Kyrpides, Nikos C. and Doudna, Jennifer A.},
abstractNote = {CRISPR-Cas9 is a powerful technology that has enabled genome editing in a wide range of species. However, the currently developed Cas9 homologs all originate from mesophilic bacteria, making them susceptible to degradation and unsuitable for applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at temperatures up to 70 °C, compared to 45 °C for Streptococcus pyogenes Cas9 (SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We also found that GeoCas9 is an effective tool for editing mammalian genomes when delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in human plasma, the thermostable GeoCas9 provides the foundation for improved RNP delivery in vivo and expands the temperature range of CRISPR-Cas9.},
doi = {10.1038/s41467-017-01408-4},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 40 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets
journal, February 2013

  • Biswas, Ambarish; Gagnon, Joshua N.; Brouns, Stan J. J.
  • RNA Biology, Vol. 10, Issue 5
  • DOI: 10.4161/rna.24046

Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis
journal, May 2013


Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes
journal, November 2015


Diversity and evolution of class 2 CRISPR–Cas systems
journal, January 2017

  • Shmakov, Sergey; Smargon, Aaron; Scott, David
  • Nature Reviews Microbiology, Vol. 15, Issue 3
  • DOI: 10.1038/nrmicro.2016.184

Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9
journal, February 2017


A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity
journal, June 2012


Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
journal, December 2014

  • Konermann, Silvana; Brigham, Mark D.; Trevino, Alexandro E.
  • Nature, Vol. 517, Issue 7536
  • DOI: 10.1038/nature14136

Viral Diversity Threshold for Adaptive Immunity in Prokaryotes
journal, December 2012

  • Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.
  • mBio, Vol. 3, Issue 6
  • DOI: 10.1128/mBio.00456-12

A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner
journal, November 2009

  • Schellenberger, Volker; Wang, Chia-wei; Geething, Nathan C.
  • Nature Biotechnology, Vol. 27, Issue 12
  • DOI: 10.1038/nbt.1588

Loop-mediated isothermal amplification of DNA
journal, June 2000


CRISPR/Cas9 in Genome Editing and Beyond
journal, June 2016


Harnessing Type I and Type III CRISPR-Cas systems for genome editing
journal, October 2015

  • Li, Yingjun; Pan, Saifu; Zhang, Yan
  • Nucleic Acids Research, Vol. 44, Issue 4
  • DOI: 10.1093/nar/gkv1044

Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
journal, November 2013

  • Fonfara, Ines; Le Rhun, Anaïs; Chylinski, Krzysztof
  • Nucleic Acids Research, Vol. 42, Issue 4
  • DOI: 10.1093/nar/gkt1074

Fast gapped-read alignment with Bowtie 2
journal, March 2012

  • Langmead, Ben; Salzberg, Steven L.
  • Nature Methods, Vol. 9, Issue 4
  • DOI: 10.1038/nmeth.1923

Structural analysis of thermostabilizing mutations of cocaine esterase
journal, April 2010

  • Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan
  • Protein Engineering, Design and Selection, Vol. 23, Issue 7
  • DOI: 10.1093/protein/gzq025

The Phyre2 web portal for protein modeling, prediction and analysis
journal, May 2015

  • Kelley, Lawrence A.; Mezulis, Stefans; Yates, Christopher M.
  • Nature Protocols, Vol. 10, Issue 6
  • DOI: 10.1038/nprot.2015.053

Strategies for extended serum half-life of protein therapeutics
journal, December 2011


Genome Editing: A New Approach to Human Therapeutics
journal, January 2016


CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus
journal, April 2015


Rational design of a split-Cas9 enzyme complex
journal, February 2015

  • Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 10
  • DOI: 10.1073/pnas.1501698112

Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
journal, August 2013

  • Hou, Z.; Zhang, Y.; Propson, N. E.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 39
  • DOI: 10.1073/pnas.1313587110

Classification and evolution of type II CRISPR-Cas systems
journal, April 2014

  • Chylinski, Krzysztof; Makarova, Kira S.; Charpentier, Emmanuelle
  • Nucleic Acids Research, Vol. 42, Issue 10
  • DOI: 10.1093/nar/gku241

How Do Thermophilic Proteins and Proteomes Withstand High Temperature?
journal, July 2011


IMG: the integrated microbial genomes database and comparative analysis system
journal, December 2011

  • Markowitz, V. M.; Chen, I. -M. A.; Palaniappan, K.
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr1044

CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
journal, August 2013

  • Mali, Prashant; Aach, John; Stranges, P. Benjamin
  • Nature Biotechnology, Vol. 31, Issue 9
  • DOI: 10.1038/nbt.2675

In vivo genome editing using Staphylococcus aureus Cas9
journal, April 2015


Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
journal, September 2013

  • Esvelt, Kevin M.; Mali, Prashant; Braff, Jonathan L.
  • Nature Methods, Vol. 10, Issue 11
  • DOI: 10.1038/nmeth.2681

Internal guide RNA interactions interfere with Cas9-mediated cleavage
journal, June 2016

  • Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11750

Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals
journal, November 2015

  • Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.
  • Frontiers in Microbiology, Vol. 6
  • DOI: 10.3389/fmicb.2015.01209

New CRISPR–Cas systems from uncultivated microbes
journal, December 2016

  • Burstein, David; Harrington, Lucas B.; Strutt, Steven C.
  • Nature, Vol. 542, Issue 7640
  • DOI: 10.1038/nature21059

CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
journal, March 2011

  • Deltcheva, Elitza; Chylinski, Krzysztof; Sharma, Cynthia M.
  • Nature, Vol. 471, Issue 7340
  • DOI: 10.1038/nature09886

An improved zinc-finger nuclease architecture for highly specific genome editing
journal, July 2007

  • Miller, Jeffrey C.; Holmes, Michael C.; Wang, Jianbin
  • Nature Biotechnology, Vol. 25, Issue 7
  • DOI: 10.1038/nbt1319

Temperature effect on CRISPR-Cas9 mediated genome editing
journal, April 2017

  • Xiang, Guanghai; Zhang, Xingying; An, Chenrui
  • Journal of Genetics and Genomics, Vol. 44, Issue 4
  • DOI: 10.1016/j.jgg.2017.03.004

Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes
journal, February 2017

  • Staahl, Brett T.; Benekareddy, Madhurima; Coulon-Bainier, Claire
  • Nature Biotechnology, Vol. 35, Issue 5
  • DOI: 10.1038/nbt.3806

Engineered CRISPR-Cas9 nucleases with altered PAM specificities
journal, June 2015

  • Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.
  • Nature, Vol. 523, Issue 7561
  • DOI: 10.1038/nature14592

Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
journal, November 2015

  • Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.
  • Nature Biotechnology, Vol. 33, Issue 12
  • DOI: 10.1038/nbt.3404

Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
journal, November 2015


    Works referencing / citing this record:

    CRISPR Interference–Potential Application in Retinal Disease
    journal, March 2020

    • Peddle, Caroline F.; Fry, Lewis E.; McClements, Michelle E.
    • International Journal of Molecular Sciences, Vol. 21, Issue 7
    • DOI: 10.3390/ijms21072329