DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interaction of Hydrocarbons with Clays under Reservoir Conditions: In Situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variably Wet Supercritical Methane

Abstract

The results from novel in situ high-pressure nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and X-ray diffraction (XRD) investigation of the interaction of the smectite hectorite with variably wet supercritical methane (scCH4) at 90 bar and 323 K (hydrostatic conditions equivalent to ~1 km depth) show that CH4 occurs in the clay interlayers, in pores external to the individual clay particles, and as bulk fluid. The occupancy of each environment depends on the relative humidity (RH) of the CH4-rich fluid and the hydration energy and size of the charge-balancing cation. As RH increases, the fraction of interlayer and interparticle CH4 decreases, although with Cs+, addition of a small amount of H2O initially increases CH4 uptake. Maximum interlayer CH4 adsorption occurs when the mean basal spacing just permits methane intercalation (~11.5 Å) and never below this basal spacing. It is also higher with divalent cations than with monovalent cations. The data show that CH4 adsorption occurs predominantly via a weak dispersion interaction with the clay and that its intercalation occurs via a passive space-filling hydrophobic mechanism. The results suggest that, under reservoir conditions, smectite interlayers may provide a reservoir for CH4 under low-water conditions.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2];  [2]; ORCiD logo [2];  [1]; ORCiD logo [3];  [3]
  1. St. Mary’s College of Maryland, St. Mary’s City, MD (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Battelle Memorial Institute, Columbus, OH (United States); Michigan State Univ., East Lansing, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS); USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1543713
Grant/Contract Number:  
AC05-76RL01830; FG02-08ER15929
Resource Type:
Accepted Manuscript
Journal Name:
ACS Earth and Space Chemistry
Additional Journal Information:
Journal Volume: 2; Journal Issue: 7; Journal ID: ISSN 2472-3452
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Geochemistry & Geophysics

Citation Formats

Bowers, Geoffrey M., Loring, John S., Schaef, H. Todd, Walter, Eric D., Burton, Sarah D., Hoyt, David W., Cunniff, Sydney S., Loganathan, Narasimhan, and Kirkpatrick, R. James. Interaction of Hydrocarbons with Clays under Reservoir Conditions: In Situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variably Wet Supercritical Methane. United States: N. p., 2018. Web. doi:10.1021/acsearthspacechem.8b00039.
Bowers, Geoffrey M., Loring, John S., Schaef, H. Todd, Walter, Eric D., Burton, Sarah D., Hoyt, David W., Cunniff, Sydney S., Loganathan, Narasimhan, & Kirkpatrick, R. James. Interaction of Hydrocarbons with Clays under Reservoir Conditions: In Situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variably Wet Supercritical Methane. United States. https://doi.org/10.1021/acsearthspacechem.8b00039
Bowers, Geoffrey M., Loring, John S., Schaef, H. Todd, Walter, Eric D., Burton, Sarah D., Hoyt, David W., Cunniff, Sydney S., Loganathan, Narasimhan, and Kirkpatrick, R. James. Mon . "Interaction of Hydrocarbons with Clays under Reservoir Conditions: In Situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variably Wet Supercritical Methane". United States. https://doi.org/10.1021/acsearthspacechem.8b00039. https://www.osti.gov/servlets/purl/1543713.
@article{osti_1543713,
title = {Interaction of Hydrocarbons with Clays under Reservoir Conditions: In Situ Infrared and Nuclear Magnetic Resonance Spectroscopy and X-ray Diffraction for Expandable Clays with Variably Wet Supercritical Methane},
author = {Bowers, Geoffrey M. and Loring, John S. and Schaef, H. Todd and Walter, Eric D. and Burton, Sarah D. and Hoyt, David W. and Cunniff, Sydney S. and Loganathan, Narasimhan and Kirkpatrick, R. James},
abstractNote = {The results from novel in situ high-pressure nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and X-ray diffraction (XRD) investigation of the interaction of the smectite hectorite with variably wet supercritical methane (scCH4) at 90 bar and 323 K (hydrostatic conditions equivalent to ~1 km depth) show that CH4 occurs in the clay interlayers, in pores external to the individual clay particles, and as bulk fluid. The occupancy of each environment depends on the relative humidity (RH) of the CH4-rich fluid and the hydration energy and size of the charge-balancing cation. As RH increases, the fraction of interlayer and interparticle CH4 decreases, although with Cs+, addition of a small amount of H2O initially increases CH4 uptake. Maximum interlayer CH4 adsorption occurs when the mean basal spacing just permits methane intercalation (~11.5 Å) and never below this basal spacing. It is also higher with divalent cations than with monovalent cations. The data show that CH4 adsorption occurs predominantly via a weak dispersion interaction with the clay and that its intercalation occurs via a passive space-filling hydrophobic mechanism. The results suggest that, under reservoir conditions, smectite interlayers may provide a reservoir for CH4 under low-water conditions.},
doi = {10.1021/acsearthspacechem.8b00039},
journal = {ACS Earth and Space Chemistry},
number = 7,
volume = 2,
place = {United States},
year = {Mon May 07 00:00:00 EDT 2018},
month = {Mon May 07 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Shale Gas and Hydrofracturing
journal, April 2012

  • Schnoor, Jerald L.
  • Environmental Science & Technology, Vol. 46, Issue 9
  • DOI: 10.1021/es3011767

Potential Restrictions for CO 2 Sequestration Sites Due to Shale and Tight Gas Production
journal, March 2012

  • Elliot, T. R.; Celia, M. A.
  • Environmental Science & Technology, Vol. 46, Issue 7
  • DOI: 10.1021/es2040015

The Environmental Costs and Benefits of Fracking
journal, October 2014


Shales at all scales: Exploring coupled processes in mudrocks
journal, March 2017


High-pressure adsorption of methane on montmorillonite, kaolinite and illite
journal, November 2013


An investigation into the thermodynamic characteristics of methane adsorption on different clay minerals
journal, July 2016


Experimental investigation of main controls to methane adsorption in clay-rich rocks
journal, December 2012


The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs
journal, June 2009


Molecular Simulations on the Structure and Dynamics of Water–Methane Fluids between Na-Montmorillonite Clay Surfaces at Elevated Temperature and Pressure
journal, June 2013

  • Rao, Qi; Xiang, Yuan; Leng, Yongsheng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 27
  • DOI: 10.1021/jp403349p

Molecular simulation of displacement of shale gas by carbon dioxide at different geological depths
journal, December 2016


Methane and Carbon Dioxide Adsorption on Illite
journal, November 2016


Hydrophobic Solvation of Gases (CO 2 , CH 4 , H 2 , Noble Gases) in Clay Interlayer Nanopores
journal, November 2017

  • Gadikota, Greeshma; Dazas, Baptiste; Rother, Gernot
  • The Journal of Physical Chemistry C, Vol. 121, Issue 47
  • DOI: 10.1021/acs.jpcc.7b09768

Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations
journal, December 2013


Molecular Level Investigation of CH 4 and CO 2 Adsorption in Hydrated Calcium–Montmorillonite
journal, November 2017

  • Lee, Mal-Soon; McGrail, B. Peter; Rousseau, Roger
  • The Journal of Physical Chemistry C, Vol. 122, Issue 2
  • DOI: 10.1021/acs.jpcc.7b05364

Hydrocarbon Behavior at Nanoscale Interfaces
journal, January 2013

  • Cole, D. R.; Ok, S.; Striolo, A.
  • Reviews in Mineralogy and Geochemistry, Vol. 75, Issue 1
  • DOI: 10.2138/rmg.2013.75.16

Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study
journal, January 2017


Recovery of Methane from Gas Hydrates Intercalated within Natural Sediments Using CO2 and a CO2/N2 Gas Mixture
journal, June 2012


Effect of Interlayer Ions on Methane Hydrate Formation in Clay Sediments
journal, January 2009

  • Yeon, Sun-Hwa; Seol, Jiwoong; Seo, Young-ju
  • The Journal of Physical Chemistry B, Vol. 113, Issue 5
  • DOI: 10.1021/jp810079c

13 C NMR of methane in an AlPO 4 11 molecular sieve: Exchange effects and shielding anisotropy
journal, December 1998


13C NMR spectroscopy of methane adsorbed in SAPO-11 molecular sieve
journal, October 1996


Interpretation of carbon-13 NMR of methane/propane hydrates in the metastable/nonequilibrium region
journal, June 1993

  • Fleyfel, F.; Song, K. Y.; Kook, A.
  • The Journal of Physical Chemistry, Vol. 97, Issue 25
  • DOI: 10.1021/j100127a024

A General Correlation for the 129 Xe NMR Chemical Shift−Pore Size Relationship in Porous Silica-Based Materials
journal, July 2002

  • Terskikh, Victor V.; Moudrakovski, Igor L.; Breeze, Steven R.
  • Langmuir, Vol. 18, Issue 15
  • DOI: 10.1021/la025714x

Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number
journal, January 1988

  • Ripmeester, J. A.; Ratcliffe, C. I.
  • The Journal of Physical Chemistry, Vol. 92, Issue 2
  • DOI: 10.1021/j100313a018

Role of Cations in CO 2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO 2 Conditions
journal, December 2016

  • Bowers, Geoffrey M.; Schaef, H. Todd; Loring, John S.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 1
  • DOI: 10.1021/acs.jpcc.6b11542

In Situ Study of CO 2 and H 2 O Partitioning between Na–Montmorillonite and Variably Wet Supercritical Carbon Dioxide
journal, May 2014

  • Loring, John S.; Ilton, Eugene S.; Chen, Jeffrey
  • Langmuir, Vol. 30, Issue 21
  • DOI: 10.1021/la500682t

In Situ Molecular Spectroscopic Evidence for CO 2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide
journal, April 2012

  • Loring, John S.; Schaef, Herbert T.; Turcu, Romulus V. F.
  • Langmuir, Vol. 28, Issue 18
  • DOI: 10.1021/la301136w

Competitive sorption of CO2 and H2O in 2:1 layer phyllosilicates
journal, July 2015

  • Schaef, Herbert T.; Loring, John S.; Glezakou, Vassiliki-Alexandra
  • Geochimica et Cosmochimica Acta, Vol. 161
  • DOI: 10.1016/j.gca.2015.03.027

In Situ X-ray Diffraction Study of Na + Saturated Montmorillonite Exposed to Variably Wet Super Critical CO 2
journal, March 2012

  • Ilton, Eugene S.; Schaef, H. Todd; Qafoku, Odeta
  • Environmental Science & Technology, Vol. 46, Issue 7
  • DOI: 10.1021/es300234v

CO 2 Sorption to Subsingle Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction Measurements
journal, August 2012

  • Rother, Gernot; Ilton, Eugene S.; Wallacher, Dirk
  • Environmental Science & Technology, Vol. 47, Issue 1
  • DOI: 10.1021/es301382y

Water Solubility at Saturation for CO 2 –CH 4 Mixtures at 323.2 K and 9.000 MPa
journal, April 2017

  • Loring, John S.; Bacon, Diana H.; Springer, Ronald D.
  • Journal of Chemical & Engineering Data, Vol. 62, Issue 5
  • DOI: 10.1021/acs.jced.6b00999

In Situ 13 C and 23 Na Magic Angle Spinning NMR Investigation of Supercritical CO 2 Incorporation in Smectite–Natural Organic Matter Composites
journal, February 2014

  • Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 7
  • DOI: 10.1021/jp410535d

Smectite fluorination and its impact on interlayer water content and structure: A way to fine tune the hydrophilicity of clay surfaces?
journal, November 2013


A simple method for partial purification of reference clays
journal, October 2005


Alkali Metal and H 2 O Dynamics at the Smectite/Water Interface
journal, October 2011

  • Bowers, Geoffrey M.; Singer, Jared W.; Bish, David L.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 47
  • DOI: 10.1021/jp2072167

Structural and dynamical relationships of Ca2+ and H2O in smectite/2H2O systems
journal, February 2014

  • Bowers, G. M.; Singer, J. W.; Bish, D. L.
  • American Mineralogist, Vol. 99, Issue 2-3
  • DOI: 10.2138/am.2014.4499

Automated high-pressure titration system with in situ infrared spectroscopic detection
journal, April 2014

  • Thompson, Christopher J.; Martin, Paul F.; Chen, Jeffrey
  • Review of Scientific Instruments, Vol. 85, Issue 4
  • DOI: 10.1063/1.4870411

Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids
journal, July 2013

  • Miller, Q. R. S.; Thompson, C. J.; Loring, J. S.
  • International Journal of Greenhouse Gas Control, Vol. 15
  • DOI: 10.1016/j.ijggc.2013.02.005

In situ XRD study of Ca2+ saturated montmorillonite (STX-1) exposed to anhydrous and wet supercritical carbon dioxide
journal, January 2012


In Situ Infrared Spectroscopic Study of Forsterite Carbonation in Wet Supercritical CO 2
journal, July 2011

  • Loring, John S.; Thompson, Christopher J.; Wang, Zheming
  • Environmental Science & Technology, Vol. 45, Issue 14
  • DOI: 10.1021/es201284e

In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide
journal, May 2012

  • Loring, John S.; Thompson, Christopher J.; Zhang, Changyong
  • The Journal of Physical Chemistry A, Vol. 116, Issue 19
  • DOI: 10.1021/jp210020t

Operando MAS NMR Reaction Studies at High Temperatures and Pressures
journal, January 2018

  • Walter, Eric D.; Qi, Long; Chamas, Ali
  • The Journal of Physical Chemistry C, Vol. 122, Issue 15
  • DOI: 10.1021/acs.jpcc.7b11442

H 2 O and Cation Structure and Dynamics in Expandable Clays:  2 H and 39 K NMR Investigations of Hectorite
journal, March 2008

  • Bowers, Geoffrey M.; Bish, David L.; Kirkpatrick, R. James
  • The Journal of Physical Chemistry C, Vol. 112, Issue 16
  • DOI: 10.1021/jp7119087

Ionic hydration enthalpies
journal, September 1977

  • Smith, Derek W.
  • Journal of Chemical Education, Vol. 54, Issue 9
  • DOI: 10.1021/ed054p540

Infrared spectra of methane adsorbed by ion-exchanged ZSM-5 zeolites
journal, March 1988

  • Yamazaki, Tatsuya; Watanuki, Isao; Ozawa, Sentaro
  • Langmuir, Vol. 4, Issue 2
  • DOI: 10.1021/la00080a031

FT-IR investigation of methane adsorption on silica
journal, September 1994


Determination of the average micropore diameter of an Illinois No. 6 coal by xenon-129 NMR
journal, July 1990

  • Wernett, Patrick C.; Larsen, John W.; Yamada, Osamu
  • Energy & Fuels, Vol. 4, Issue 4
  • DOI: 10.1021/ef00022a014

Water Structure and Dynamics in Smectites: X-ray Diffraction and 2 H NMR Spectroscopy of Mg–, Ca–, Sr–, Na–, Cs–, and Pb–Hectorite
journal, April 2016

  • Reddy, U. Venkateswara; Bowers, Geoffrey M.; Loganathan, Narasimhan
  • The Journal of Physical Chemistry C, Vol. 120, Issue 16
  • DOI: 10.1021/acs.jpcc.6b03431

Molecular Dynamics Study of CO 2 and H 2 O Intercalation in Smectite Clays: Effect of Temperature and Pressure on Interlayer Structure and Dynamics in Hectorite
journal, October 2017

  • Loganathan, Narasimhan; Yazaydin, A. Ozgur; Bowers, Geoffrey M.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b06825

Structure, Energetics, and Dynamics of Smectite Clay Interlayer Hydration: Molecular Dynamics and Metadynamics Investigation of Na-Hectorite
journal, March 2013

  • Morrow, Christin P.; Yazaydin, A. Özgür; Krishnan, Marimuthu
  • The Journal of Physical Chemistry C, Vol. 117, Issue 10
  • DOI: 10.1021/jp312286g

Formation and Restacking of Disordered Smectite Osmotic Hydrates
journal, December 2015

  • Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.
  • Clays and Clay Minerals, Vol. 63, Issue 6
  • DOI: 10.1346/CCMN.2015.0630602

Works referencing / citing this record:

Understanding methane/carbon dioxide partitioning in clay nano- and meso-pores with constant reservoir composition molecular dynamics modeling
journal, January 2019

  • Loganathan, Narasimhan; Bowers, Geoffrey M.; Ngouana Wakou, Brice F.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 13
  • DOI: 10.1039/c9cp00851a