DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst

Abstract

Here, we investigate the mechanism of water oxidation catalyzed by the CuII(pyalk)2 complex, combining density functional theory with experimental measurements of turnover frequencies, UV–visible spectra, H/D kinetic isotope effects (KIEs), electrochemical analysis, and synthesis of a derivative complex. We find that only in the cis form does CuII(pyalk)2 convert water to dioxygen. In a series of alternating chemical and electrochemical steps, the catalyst is activated to form a metal oxyl radical species that undergoes a water-nucleophilic attack defining the rate-limiting step of the reaction. The experimental H/D KIE (3.4) is in agreement with the calculated value (3.7), shown to be determined by deprotonation of the substrate nucleophile upon O–O bond formation. The reported mechanistic findings are particularly valuable for rational design of complexes inspired by CuII(pyalk)2.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Yale Univ., New Haven, CT (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Light Energy Activated Redox Processes (LEAP); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1543705
Grant/Contract Number:  
SC0001059
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 9; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemistry; water oxidation; catalysis; copper; water-nucleophilic attack; density functional theory; electrocatalysis

Citation Formats

Rudshteyn, Benjamin, Fisher, Katherine J., Lant, Hannah M. C., Yang, Ke R., Mercado, Brandon Q., Brudvig, Gary W., Crabtree, Robert H., and Batista, Victor S. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst. United States: N. p., 2018. Web. doi:10.1021/acscatal.8b02466.
Rudshteyn, Benjamin, Fisher, Katherine J., Lant, Hannah M. C., Yang, Ke R., Mercado, Brandon Q., Brudvig, Gary W., Crabtree, Robert H., & Batista, Victor S. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst. United States. https://doi.org/10.1021/acscatal.8b02466
Rudshteyn, Benjamin, Fisher, Katherine J., Lant, Hannah M. C., Yang, Ke R., Mercado, Brandon Q., Brudvig, Gary W., Crabtree, Robert H., and Batista, Victor S. Wed . "Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst". United States. https://doi.org/10.1021/acscatal.8b02466. https://www.osti.gov/servlets/purl/1543705.
@article{osti_1543705,
title = {Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst},
author = {Rudshteyn, Benjamin and Fisher, Katherine J. and Lant, Hannah M. C. and Yang, Ke R. and Mercado, Brandon Q. and Brudvig, Gary W. and Crabtree, Robert H. and Batista, Victor S.},
abstractNote = {Here, we investigate the mechanism of water oxidation catalyzed by the CuII(pyalk)2 complex, combining density functional theory with experimental measurements of turnover frequencies, UV–visible spectra, H/D kinetic isotope effects (KIEs), electrochemical analysis, and synthesis of a derivative complex. We find that only in the cis form does CuII(pyalk)2 convert water to dioxygen. In a series of alternating chemical and electrochemical steps, the catalyst is activated to form a metal oxyl radical species that undergoes a water-nucleophilic attack defining the rate-limiting step of the reaction. The experimental H/D KIE (3.4) is in agreement with the calculated value (3.7), shown to be determined by deprotonation of the substrate nucleophile upon O–O bond formation. The reported mechanistic findings are particularly valuable for rational design of complexes inspired by CuII(pyalk)2.},
doi = {10.1021/acscatal.8b02466},
journal = {ACS Catalysis},
number = 9,
volume = 8,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Light-driven water oxidation for solar fuels
journal, November 2012

  • Young, Karin J.; Martini, Lauren A.; Milot, Rebecca L.
  • Coordination Chemistry Reviews, Vol. 256, Issue 21-22
  • DOI: 10.1016/j.ccr.2012.03.031

Molecular Catalysts for Water Oxidation
journal, July 2015


Iridium-based complexes for water oxidation
journal, January 2015

  • Thomsen, Julianne M.; Huang, Daria L.; Crabtree, Robert H.
  • Dalton Transactions, Vol. 44, Issue 28
  • DOI: 10.1039/C5DT00863H

How to make an efficient and robust molecular catalyst for water oxidation
journal, January 2017

  • Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Matheu, Roc
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/C7CS00248C

A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis
journal, February 2017

  • Michaelos, Thoe K.; Shopov, Dimitar Y.; Sinha, Shashi Bhushan
  • Accounts of Chemical Research, Vol. 50, Issue 4
  • DOI: 10.1021/acs.accounts.6b00652

Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy
journal, April 2016

  • Yang, Ke R.; Matula, Adam J.; Kwon, Gihan
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b01750

Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand
journal, April 2017

  • Fisher, Katherine J.; Materna, Kelly L.; Mercado, Brandon Q.
  • ACS Catalysis, Vol. 7, Issue 5
  • DOI: 10.1021/acscatal.7b00494

A soluble copper–bipyridine water-oxidation electrocatalyst
journal, May 2012

  • Barnett, Shoshanna M.; Goldberg, Karen I.; Mayer, James M.
  • Nature Chemistry, Vol. 4, Issue 6
  • DOI: 10.1038/nchem.1350

Systematic Investigation of the Catalytic Cycle of a Single Site Ruthenium Oxygen Evolving Complex Using Density Functional Theory
journal, July 2011

  • Hughes, Thomas F.; Friesner, Richard A.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 29
  • DOI: 10.1021/jp2026576

Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18 O Kinetic Isotope Effects
journal, November 2015


A Ru-Hbpp-Based Water-Oxidation Catalyst Anchored on Rutile TiO 2
journal, April 2009

  • Francàs, Laia; Sala, Xavier; Benet-Buchholz, Jordi
  • ChemSusChem, Vol. 2, Issue 4
  • DOI: 10.1002/cssc.200800191

Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms
journal, June 2017

  • Koepke, Sara J.; Light, Kenneth M.; VanNatta, Peter E.
  • Journal of the American Chemical Society, Vol. 139, Issue 25
  • DOI: 10.1021/jacs.7b03278

Nucleophilic water attack is not a possible mechanism for O–O bond formation in photosystem II
journal, April 2017

  • Siegbahn, Per E. M.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 19
  • DOI: 10.1073/pnas.1617843114

Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis
journal, October 2017


Electrocatalytic Water Oxidation by a Dinuclear Copper Complex in a Neutral Aqueous Solution
journal, February 2015

  • Su, Xiao-Jun; Gao, Meng; Jiao, Lei
  • Angewandte Chemie International Edition, Vol. 54, Issue 16
  • DOI: 10.1002/anie.201411625

Redox Non-innocent Ligand Controls Water Oxidation Overpotential in a New Family of Mononuclear Cu-Based Efficient Catalysts
journal, May 2015

  • Garrido-Barros, Pablo; Funes-Ardoiz, Ignacio; Drouet, Samuel
  • Journal of the American Chemical Society, Vol. 137, Issue 21
  • DOI: 10.1021/jacs.5b03977

Single Electron Transfer Steps in Water Oxidation Catalysis. Redefining the Mechanistic Scenario
journal, February 2017

  • Funes-Ardoiz, Ignacio; Garrido-Barros, Pablo; Llobet, Antoni
  • ACS Catalysis, Vol. 7, Issue 3
  • DOI: 10.1021/acscatal.6b03253

Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex
journal, January 2013

  • Zhang, Ming-Tian; Chen, Zuofeng; Kang, Peng
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja3097515

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

Systematic optimization of long-range corrected hybrid density functionals
journal, February 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 128, Issue 8
  • DOI: 10.1063/1.2834918

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations
journal, November 2013

  • Luo, Sijie; Averkiev, Boris; Yang, Ke R.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 1
  • DOI: 10.1021/ct400712k

Assessing the accuracy of some popular DFT methods for computing harmonic vibrational frequencies of water clusters
journal, December 2015

  • Howard, J. Coleman; Enyard, Jordan D.; Tschumper, Gregory S.
  • The Journal of Chemical Physics, Vol. 143, Issue 21
  • DOI: 10.1063/1.4936654

Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions
journal, December 2010

  • Thanthiriwatte, Kanchana S.; Hohenstein, Edward G.; Burns, Lori A.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 1
  • DOI: 10.1021/ct100469b

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F
journal, October 1983

  • Clark, Timothy; Chandrasekhar, Jayaraman; Spitznagel, G�nther W.
  • Journal of Computational Chemistry, Vol. 4, Issue 3
  • DOI: 10.1002/jcc.540040303

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527

Computing Redox Potentials in Solution:  Density Functional Theory as A Tool for Rational Design of Redox Agents
journal, August 2002

  • Baik, Mu-Hyun; Friesner, Richard A.
  • The Journal of Physical Chemistry A, Vol. 106, Issue 32
  • DOI: 10.1021/jp025853n

DFT flavor of coordination chemistry
journal, August 2014


Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory
journal, April 1977

  • Seeger, Rolf; Pople, John A.
  • The Journal of Chemical Physics, Vol. 66, Issue 7
  • DOI: 10.1063/1.434318

Stability analysis for solutions of the closed shell Kohn–Sham equation
journal, June 1996

  • Bauernschmitt, Rüdiger; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 104, Issue 22
  • DOI: 10.1063/1.471637

Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms
journal, February 1970

  • Wachters, A. J. H.
  • The Journal of Chemical Physics, Vol. 52, Issue 3
  • DOI: 10.1063/1.1673095

Gaussian basis sets for molecular calculations. The representation of 3 d orbitals in transition‐metal atoms
journal, May 1977

  • Hay, P. Jeffrey
  • The Journal of Chemical Physics, Vol. 66, Issue 10
  • DOI: 10.1063/1.433731

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18
journal, May 1980

  • McLean, A. D.; Chandler, G. S.
  • The Journal of Chemical Physics, Vol. 72, Issue 10, p. 5639-5648
  • DOI: 10.1063/1.438980

Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
journal, April 1984

  • Frisch, Michael J.; Pople, John A.; Binkley, J. Stephen
  • The Journal of Chemical Physics, Vol. 80, Issue 7
  • DOI: 10.1063/1.447079

Highly correlated systems. Excitation energies of first row transition metals Sc–Cu
journal, July 1989

  • Raghavachari, Krishnan; Trucks, Gary W.
  • The Journal of Chemical Physics, Vol. 91, Issue 2
  • DOI: 10.1063/1.457230

On evaluating the reaction path Hamiltonian
journal, January 1988

  • Page, Michael; McIver, James W.
  • The Journal of Chemical Physics, Vol. 88, Issue 2
  • DOI: 10.1063/1.454172

Following steepest descent reaction paths. The use of higher energy derivatives with a b i n i t i o electronic structure methods
journal, October 1990

  • Page, Michael; Doubleday, Charles; McIver, James W.
  • The Journal of Chemical Physics, Vol. 93, Issue 8
  • DOI: 10.1063/1.459634

How to Conceptualize Catalytic Cycles? The Energetic Span Model
journal, February 2011

  • Kozuch, Sebastian; Shaik, Sason
  • Accounts of Chemical Research, Vol. 44, Issue 2
  • DOI: 10.1021/ar1000956

Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory
journal, July 1996


Adiabatic time-dependent density functional methods for excited state properties
journal, October 2002

  • Furche, Filipp; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 117, Issue 16
  • DOI: 10.1063/1.1508368

Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model
journal, March 2006

  • Scalmani, Giovanni; Frisch, Michael J.; Mennucci, Benedetta
  • The Journal of Chemical Physics, Vol. 124, Issue 9
  • DOI: 10.1063/1.2173258

An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules
journal, November 1998

  • Stratmann, R. Eric; Scuseria, Gustavo E.; Frisch, Michael J.
  • The Journal of Chemical Physics, Vol. 109, Issue 19
  • DOI: 10.1063/1.477483

Geometric derivatives of excitation energies using SCF and DFT
journal, July 1999


Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals
journal, January 2000


Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution
journal, August 2006

  • Improta, Roberto; Barone, Vincenzo; Scalmani, Giovanni
  • The Journal of Chemical Physics, Vol. 125, Issue 5
  • DOI: 10.1063/1.2222364

Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach
journal, August 2007

  • Improta, Roberto; Scalmani, Giovanni; Frisch, Michael J.
  • The Journal of Chemical Physics, Vol. 127, Issue 7
  • DOI: 10.1063/1.2757168

Continuous surface charge polarizable continuum models of solvation. I. General formalism
journal, March 2010

  • Scalmani, Giovanni; Frisch, Michael J.
  • The Journal of Chemical Physics, Vol. 132, Issue 11
  • DOI: 10.1063/1.3359469

The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data
journal, October 1998

  • Tissandier, Michael D.; Cowen, Kenneth A.; Feng, Wan Yong
  • The Journal of Physical Chemistry A, Vol. 102, Issue 40
  • DOI: 10.1021/jp982638r

Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton
journal, August 2006

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp063552y

Reduction of Systematic Uncertainty in DFT Redox Potentials of Transition-Metal Complexes
journal, March 2012

  • Konezny, Steven J.; Doherty, Mark D.; Luca, Oana R.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 10
  • DOI: 10.1021/jp300485t

Absolute Potential of the Standard Hydrogen Electrode and the Problem of Interconversion of Potentials in Different Solvents
journal, June 2010

  • Isse, Abdirisak A.; Gennaro, Armando
  • The Journal of Physical Chemistry B, Vol. 114, Issue 23
  • DOI: 10.1021/jp100402x

Computational electrochemistry: prediction of liquid-phase reduction potentials
journal, January 2014

  • Marenich, Aleksandr V.; Ho, Junming; Coote, Michelle L.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 29
  • DOI: 10.1039/C4CP01572J

Construction of Pourbaix Diagrams for Ruthenium-Based Water-Oxidation Catalysts by Density Functional Theory
journal, November 2012

  • Marenich, Aleksandr V.; Majumdar, Abir; Lenz, Michelle
  • Angewandte Chemie International Edition, Vol. 51, Issue 51
  • DOI: 10.1002/anie.201206012

Molecular mechanism of lytic polysaccharide monooxygenases
journal, January 2018

  • Hedegård, Erik Donovan; Ryde, Ulf
  • Chemical Science, Vol. 9, Issue 15
  • DOI: 10.1039/C8SC00426A

Quantum Refinement Does Not Support Dinuclear Copper Sites in Crystal Structures of Particulate Methane Monooxygenase
journal, December 2017

  • Cao, Lili; Caldararu, Octav; Rosenzweig, Amy C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201708977

Catalytic Oxygen Evolution from Manganese Complexes with an Oxidation-Resistant N,N,O-Donor Ligand
journal, October 2016

  • Michaelos, Thoe K.; Lant, Hannah M. C.; Sharninghausen, Liam S.
  • ChemPlusChem, Vol. 81, Issue 10
  • DOI: 10.1002/cplu.201600353

Foot of the Wave Analysis for Mechanistic Elucidation and Benchmarking Applications in Molecular Water Oxidation Catalysis
journal, November 2016


Single-Site Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO 4 2− as a Proton Acceptor at pH 8
journal, September 2014

  • Coggins, Michael K.; Zhang, Ming-Tian; Chen, Zuofeng
  • Angewandte Chemie International Edition, Vol. 53, Issue 45
  • DOI: 10.1002/anie.201407131

Electrocatalytic water oxidation by Cu( ii ) ions in a neutral borate buffer solution
journal, January 2017

  • Huang, Hai-Hua; Wang, Jia-Wei; Sahoo, Pathik
  • Chemical Communications, Vol. 53, Issue 67
  • DOI: 10.1039/C7CC04834C

Calculation of Equilibrium Constants for Isotopic Exchange Reactions
journal, May 1947

  • Bigeleisen, Jacob; Mayer, Maria Goeppert
  • The Journal of Chemical Physics, Vol. 15, Issue 5
  • DOI: 10.1063/1.1746492

Works referencing / citing this record:

Efficient Homogeneous Electrocatalytic Water Oxidation by a Manganese Cluster with an Overpotential of Only 74 mV
journal, January 2019

  • Ghosh, Totan; Maayan, Galia
  • Angewandte Chemie International Edition, Vol. 58, Issue 9
  • DOI: 10.1002/anie.201813895

Concerted proton-electron transfer oxidation of phenols and hydrocarbons by a high-valent nickel complex
journal, January 2020

  • Fisher, Katherine J.; Feuer, Margalit L.; Lant, Hannah M. C.
  • Chemical Science, Vol. 11, Issue 6
  • DOI: 10.1039/c9sc05565g

Artificial photosynthesis: opportunities and challenges of molecular catalysts
journal, January 2019

  • Zhang, Biaobiao; Sun, Licheng
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00897c

Dicopper( ii ) tetrapyridyl complexes incorporated with ancillary ligands for effective water oxidation
journal, January 2020

  • Pi, Wen-Hui; Li, Qi-Jun; Wu, Min
  • New Journal of Chemistry, Vol. 44, Issue 28
  • DOI: 10.1039/d0nj00624f

Efficient Homogeneous Electrocatalytic Water Oxidation by a Manganese Cluster with an Overpotential of Only 74 mV
journal, January 2019


Copper Containing Molecular Systems in Electrocatalytic Water Oxidation—Trends and Perspectives
journal, January 2019

  • Lukács, Dávid; Szyrwiel, Łukasz; Pap, József
  • Catalysts, Vol. 9, Issue 1
  • DOI: 10.3390/catal9010083

Copper-containing hybrid compounds based on extremely rare [V 2 Mo 6 O 26 ] 6– POM as water oxidation catalysts
journal, January 2019

  • Buvailo, Halyna I.; Makhankova, Valeriya G.; Kokozay, Vladimir N.
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 7
  • DOI: 10.1039/c9qi00040b