DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management

Abstract

The relationship between collective properties and performance of antiagglomerants (AAs) used in hydrate management is handled using molecular dynamics simulations and enhanced sampling techniques. A thin film of AAs adsorbed at the interface between one flat sII methane hydrate substrate and a fluid hydrocarbon mixture containing methane and $$n$$-dodecane is studied. The AA considered is a surface-active compound with a complex hydrophilic head that contains both amide and tertiary ammonium cation groups and hydrophobic tails. At a sufficiently high AA density, the interplay between the surfactant layer and the liquid hydrocarbon excludes methane from the interfacial region. In this scenario, we combine metadynamics and umbrella sampling frameworks to study accurately the free-energy landscape and the equilibrium rates associated with the transport of one methane molecule across the AA film. We observe that the local configurational changes of the liquid hydrocarbon packed within the AA film are associated with high free-energy barriers for methane transport. The time scales estimated for the transport of methane across the AA film can be, in some cases, comparable to those reported in the literature for the growth of hydrates, suggesting that one possible mechanism by which AAs delay the formation of hydrate plugs could be providing a barrier to methane transport. Considering the interplay between the structural design and collective properties of AAs might be of relevance to improve their performance in flow assurance.

Authors:
ORCiD logo [1];  [1];  [2];  [2];  [2];  [2]; ORCiD logo [1]
  1. Univ. College London, London (United Kingdom). Dept. of Chemical Engineering
  2. Halliburton, Houston, TX (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE
OSTI Identifier:
1543677
Resource Type:
Accepted Manuscript
Journal Name:
Langmuir
Additional Journal Information:
Journal Volume: 34; Journal Issue: 33; Journal ID: ISSN 0743-7463
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Materials Science

Citation Formats

Sicard, François, Bui, Tai, Monteiro, Deepak, Lan, Qiang, Ceglio, Mark, Burress, Charlotte, and Striolo, Alberto. Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management. United States: N. p., 2018. Web. doi:10.1021/acs.langmuir.8b01366.
Sicard, François, Bui, Tai, Monteiro, Deepak, Lan, Qiang, Ceglio, Mark, Burress, Charlotte, & Striolo, Alberto. Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management. United States. https://doi.org/10.1021/acs.langmuir.8b01366
Sicard, François, Bui, Tai, Monteiro, Deepak, Lan, Qiang, Ceglio, Mark, Burress, Charlotte, and Striolo, Alberto. Wed . "Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management". United States. https://doi.org/10.1021/acs.langmuir.8b01366. https://www.osti.gov/servlets/purl/1543677.
@article{osti_1543677,
title = {Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management},
author = {Sicard, François and Bui, Tai and Monteiro, Deepak and Lan, Qiang and Ceglio, Mark and Burress, Charlotte and Striolo, Alberto},
abstractNote = {The relationship between collective properties and performance of antiagglomerants (AAs) used in hydrate management is handled using molecular dynamics simulations and enhanced sampling techniques. A thin film of AAs adsorbed at the interface between one flat sII methane hydrate substrate and a fluid hydrocarbon mixture containing methane and $n$-dodecane is studied. The AA considered is a surface-active compound with a complex hydrophilic head that contains both amide and tertiary ammonium cation groups and hydrophobic tails. At a sufficiently high AA density, the interplay between the surfactant layer and the liquid hydrocarbon excludes methane from the interfacial region. In this scenario, we combine metadynamics and umbrella sampling frameworks to study accurately the free-energy landscape and the equilibrium rates associated with the transport of one methane molecule across the AA film. We observe that the local configurational changes of the liquid hydrocarbon packed within the AA film are associated with high free-energy barriers for methane transport. The time scales estimated for the transport of methane across the AA film can be, in some cases, comparable to those reported in the literature for the growth of hydrates, suggesting that one possible mechanism by which AAs delay the formation of hydrate plugs could be providing a barrier to methane transport. Considering the interplay between the structural design and collective properties of AAs might be of relevance to improve their performance in flow assurance.},
doi = {10.1021/acs.langmuir.8b01366},
journal = {Langmuir},
number = 33,
volume = 34,
place = {United States},
year = {Wed Jul 25 00:00:00 EDT 2018},
month = {Wed Jul 25 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mechanisms of gas hydrate formation and inhibition
journal, March 2002


History of the Development of Low Dosage Hydrate Inhibitors
journal, May 2006


Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth
journal, October 2009


Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
journal, January 2015

  • Michalis, Vasileios K.; Costandy, Joseph; Tsimpanogiannis, Ioannis N.
  • The Journal of Chemical Physics, Vol. 142, Issue 4
  • DOI: 10.1063/1.4905572

Deep-ocean field test of methane hydrate formation from a remotely operated vehicle
journal, January 1997


Clathrate Hydrates: From Laboratory Science to Engineering Practice
journal, August 2009

  • Sum, Amadeu K.; Koh, Carolyn A.; Sloan, E. Dendy
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 16
  • DOI: 10.1021/ie900679m

Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand
journal, August 1996

  • Kaiho, Kunio; Arinobu, Tetsuya; Ishiwatari, Ryoshi
  • Paleoceanography, Vol. 11, Issue 4
  • DOI: 10.1029/96PA01021

Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates
journal, August 2006

  • Park, Y.; Kim, D. -Y.; Lee, J. -W.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 34
  • DOI: 10.1073/pnas.0602251103

Fundamental principles and applications of natural gas hydrates
journal, November 2003


Stable Low-Pressure Hydrogen Clusters Stored in a Binary Clathrate Hydrate
journal, October 2004


Hydrogen Clusters in Clathrate Hydrate
journal, September 2002


Development of a novel hydrate-based refrigeration system: A preliminary overview
journal, December 2006


Methane Ice Worms: Hesiocaeca methanicola Colonizing Fossil Fuel Reserves
journal, April 2000

  • Fisher, C. R.; MacDonald, I. R.; Sassen, R.
  • Naturwissenschaften, Vol. 87, Issue 4
  • DOI: 10.1007/s001140050700

Carbon Dioxide Hydrate and Floods on Mars
journal, February 1974


Methane hydrate film growth kinetics
journal, July 2001


Insights into the Kinetics of Methane Hydrate Formation in a Stirred Tank Reactor by In Situ Raman Spectroscopy
journal, June 2015


Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths
journal, April 2013

  • Kulkarni, Samir A.; Kadam, Somnath S.; Meekes, Hugo
  • Crystal Growth & Design, Vol. 13, Issue 6
  • DOI: 10.1021/cg400139t

Multicomponent Gas Hydrate Nucleation: The Effect of the Cooling Rate and Composition
journal, December 2010

  • Abay, Hailu K.; Svartaas, Thor M.
  • Energy & Fuels, Vol. 25, Issue 1
  • DOI: 10.1021/ef1011879

New Observations and Insights into the Morphology and Growth Kinetics of Hydrate Films
journal, February 2014

  • Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04129

Kinetic Hydrate Inhibitor Studies for Gas Hydrate Systems: A Review of Experimental Equipment and Test Methods
journal, December 2016


Nucleation and control of clathrate hydrates: insights from simulation
journal, January 2007

  • Moon, C.; Hawtin, R. W.; Rodger, P. Mark
  • Faraday Discussions, Vol. 136
  • DOI: 10.1039/b618194p

Molecular Insights into the Heterogeneous Crystal Growth of sI Methane Hydrate
journal, August 2006

  • Vatamanu, Jenel; Kusalik, Peter G.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp061684l

Developing a Comprehensive Understanding and Model of Hydrate in Multiphase Flow: From Laboratory Measurements to Field Applications
journal, May 2012

  • Sum, Amadeu K.; Koh, Carolyn A.; Sloan, E. Dendy
  • Energy & Fuels, Vol. 26, Issue 7
  • DOI: 10.1021/ef300191e

Modelling of hydrate formation kinetics: State-of-the-art and future directions
journal, April 2008


Gas hydrate risks and prevention for deep water drilling and completion: A case study of well QDN-X in Qiongdongnan Basin, South China Sea
journal, December 2014


Effective kinetic inhibitors for natural gas hydrates
journal, April 1996


Anti-agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions
journal, September 2016


Evidence of Structure-Performance Relation for Surfactants Used as Antiagglomerants for Hydrate Management
journal, February 2017


Gas hydrate anti-agglomerant properties of polypropoxylates and some other demulsifiers
journal, February 2009

  • Kelland, Malcolm A.; Svartås, Thor Martin; Andersen, Lindy Dybvik
  • Journal of Petroleum Science and Engineering, Vol. 64, Issue 1-4
  • DOI: 10.1016/j.petrol.2008.12.001

Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces
journal, January 2014

  • Aman, Zachary M.; Sloan, E. Dendy; Sum, Amadeu K.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 45
  • DOI: 10.1039/C4CP02927E

Molecular mechanisms responsible for hydrate anti-agglomerant performance
journal, January 2016

  • Phan, Anh; Bui, Tai; Acosta, Erick
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 36
  • DOI: 10.1039/C6CP03296F

Antiagglomerants Affect Gas Hydrate Growth
journal, June 2018

  • Bui, Tai; Sicard, Francois; Monteiro, Deepak
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 12
  • DOI: 10.1021/acs.jpclett.8b01180

Hydrate Plug Prevention by Quaternary Ammonium Salts
journal, February 2005

  • Zanota, Marie L.; Dicharry, Christophe; Graciaa, Alain
  • Energy & Fuels, Vol. 19, Issue 2
  • DOI: 10.1021/ef040064l

Screening and Compounding of Gas Hydrate Anti-agglomerants from Commercial Additives through Morphology Observation
journal, April 2013

  • Chen, Jun; Sun, Chang-Yu; Peng, Bao-Zi
  • Energy & Fuels, Vol. 27, Issue 5
  • DOI: 10.1021/ef400147j

Studies on some zwitterionic surfactant gas hydrate anti-agglomerants
journal, June 2006

  • Kelland, Malcolm A.; Svartaas, Thor M.; Øvsthus, Jorunn
  • Chemical Engineering Science, Vol. 61, Issue 12
  • DOI: 10.1016/j.ces.2006.02.003

Effectiveness of Alcohol Cosurfactants in Hydrate Antiagglomeration
journal, August 2012

  • Sun, Minwei; Wang, Yan; Firoozabadi, Abbas
  • Energy & Fuels, Vol. 26, Issue 9
  • DOI: 10.1021/ef300922h

Insights into methane hydrate formation, agglomeration, and dissociation in water+diesel oil dispersed system
journal, October 2014


Evaluation of Gas Hydrate Anti-agglomerant Based on Laser Measurement
journal, December 2014

  • Chen, Jun; Wang, Yun-Fei; Sun, Chang-Yu
  • Energy & Fuels, Vol. 29, Issue 1
  • DOI: 10.1021/ef5022413

Hydrate Risk Management at High Watercuts with Anti-agglomerant Hydrate Inhibitors
journal, April 2009


Methane Clathrate Hydrate Nucleation Mechanism by Advanced Molecular Simulations
journal, September 2014

  • Lauricella, Marco; Meloni, Simone; English, Niall J.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 40
  • DOI: 10.1021/jp5052479

Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation
journal, June 2015

  • Lauricella, Marco; Meloni, Simone; Liang, Shuai
  • The Journal of Chemical Physics, Vol. 142, Issue 24
  • DOI: 10.1063/1.4922696

Evidence from mixed hydrate nucleation for a funnel model of crystallization
journal, October 2016

  • Hall, Kyle Wm.; Carpendale, Sheelagh; Kusalik, Peter G.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1610437113

Surface Chemistry and Gas Hydrates in Flow Assurance
journal, January 2011

  • Zerpa, Luis E.; Salager, Jean-Louis; Koh, Carolyn A.
  • Industrial & Engineering Chemistry Research, Vol. 50, Issue 1
  • DOI: 10.1021/ie100873k

Escaping free-energy minima
journal, September 2002

  • Laio, A.; Parrinello, M.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 20
  • DOI: 10.1073/pnas.202427399

Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
journal, February 1977


GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


A potential model for the study of ices and amorphous water: TIP4P/Ice
journal, June 2005

  • Abascal, J. L. F.; Sanz, E.; García Fernández, R.
  • The Journal of Chemical Physics, Vol. 122, Issue 23
  • DOI: 10.1063/1.1931662

PLUMED 2: New feathers for an old bird
journal, February 2014

  • Tribello, Gareth A.; Bonomi, Massimiliano; Branduardi, Davide
  • Computer Physics Communications, Vol. 185, Issue 2
  • DOI: 10.1016/j.cpc.2013.09.018

Calculation of Liquid Water−Hydrate−Methane Vapor Phase Equilibria from Molecular Simulations
journal, May 2010

  • Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas
  • The Journal of Physical Chemistry B, Vol. 114, Issue 17
  • DOI: 10.1021/jp911032q

Why ice-binding type I antifreeze protein acts as a gas hydrate crystal inhibitor
journal, January 2015

  • Alireza Bagherzadeh, S.; Alavi, Saman; Ripmeester, John A.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 15
  • DOI: 10.1039/C4CP05003G

Determining the three-phase coexistence line in methane hydrates using computer simulations
journal, August 2010

  • Conde, M. M.; Vega, C.
  • The Journal of Chemical Physics, Vol. 133, Issue 6
  • DOI: 10.1063/1.3466751

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Computer simulations of NaCl association in polarizable water
journal, March 1994

  • Smith, David E.; Dang, Liem X.
  • The Journal of Chemical Physics, Vol. 100, Issue 5
  • DOI: 10.1063/1.466363

Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase
journal, January 1881


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

A smooth particle mesh Ewald method
journal, November 1995

  • Essmann, Ulrich; Perera, Lalith; Berkowitz, Max L.
  • The Journal of Chemical Physics, Vol. 103, Issue 19
  • DOI: 10.1063/1.470117

Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity
journal, May 2001


Water proton configurations in structures I, II, and H clathrate hydrate unit cells
journal, March 2013

  • Takeuchi, Fumihito; Hiratsuka, Masaki; Ohmura, Ryo
  • The Journal of Chemical Physics, Vol. 138, Issue 12
  • DOI: 10.1063/1.4795499

Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion
journal, January 2011

  • Aman, Zachary M.; Brown, Erika P.; Sloan, E. Dendy
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp21907c

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
journal, February 2013


The Nose–Hoover thermostat
journal, October 1985

  • Evans, D. J.; Holian, B. L.
  • The Journal of Chemical Physics, Vol. 83, Issue 8
  • DOI: 10.1063/1.449071

Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981

  • Parrinello, M.; Rahman, A.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328693

Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

Molecular Dynamics:  Survey of Methods for Simulating the Activity of Proteins
journal, May 2006

  • Adcock, Stewart A.; McCammon, J. Andrew
  • Chemical Reviews, Vol. 106, Issue 5
  • DOI: 10.1021/cr040426m

Enhanced sampling techniques in biomolecular simulations
journal, November 2015


Enhanced sampling techniques in molecular dynamics simulations of biological systems
journal, May 2015

  • Bernardi, Rafael C.; Melo, Marcelo C. R.; Schulten, Klaus
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1850, Issue 5
  • DOI: 10.1016/j.bbagen.2014.10.019

Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics
journal, April 2016


Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science
journal, November 2008


Metadynamics: Metadynamics
journal, February 2011

  • Barducci, Alessandro; Bonomi, Massimiliano; Parrinello, Michele
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 5
  • DOI: 10.1002/wcms.31

New advances in metadynamics: New advances in metadynamics
journal, March 2012

  • Sutto, Ludovico; Marsili, Simone; Gervasio, Francesco Luigi
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 5
  • DOI: 10.1002/wcms.1103

Umbrella sampling: Umbrella sampling
journal, May 2011

  • Kästner, Johannes
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 6
  • DOI: 10.1002/wcms.66

Metadynamics Simulation of Prion Protein:  β-Structure Stability and the Early Stages of Misfolding
journal, March 2006

  • Barducci, Alessandro; Chelli, Riccardo; Procacci, Piero
  • Journal of the American Chemical Society, Vol. 128, Issue 8
  • DOI: 10.1021/ja057076l

Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase
journal, June 2013

  • Sutto, L.; Gervasio, F. L.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 26
  • DOI: 10.1073/pnas.1221953110

Reconstructing the free-energy landscape of Met-enkephalin using dihedral principal component analysis and well-tempered metadynamics
journal, June 2013

  • Sicard, François; Senet, Patrick
  • The Journal of Chemical Physics, Vol. 138, Issue 23
  • DOI: 10.1063/1.4810884

DNA denaturation bubbles: Free-energy landscape and nucleation/closure rates
journal, January 2015

  • Sicard, François; Destainville, Nicolas; Manghi, Manoel
  • The Journal of Chemical Physics, Vol. 142, Issue 3
  • DOI: 10.1063/1.4905668

Metadynamics studies of crystal nucleation
journal, February 2015


Urea homogeneous nucleation mechanism is solvent dependent
journal, January 2015

  • Salvalaglio, Matteo; Mazzotti, Marco; Parrinello, Michele
  • Faraday Discussions, Vol. 179
  • DOI: 10.1039/C4FD00235K

CO 2 packing polymorphism under pressure: Mechanism and thermodynamics of the I-III polymorphic transition
journal, September 2017

  • Gimondi, Ilaria; Salvalaglio, Matteo
  • The Journal of Chemical Physics, Vol. 147, Issue 11
  • DOI: 10.1063/1.4993701

Combined Metadynamics and Umbrella Sampling Method for the Calculation of Ion Permeation Free Energy Profiles
journal, June 2011

  • Zhang, Yong; Voth, Gregory A.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 7
  • DOI: 10.1021/ct200100e

Molecular Dynamics Simulation Analysis of Membrane Defects and Pore Propensity of Hemifusion Diaphragms
journal, March 2013


Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations
journal, May 1999


Adiabatic bias molecular dynamics: A method to navigate the conformational space of complex molecular systems
journal, February 1999

  • Marchi, Massimo; Ballone, Pietro
  • The Journal of Chemical Physics, Vol. 110, Issue 8
  • DOI: 10.1063/1.478259

Hierarchy of folding and unfolding events of protein G,CI2, and ACBP from explicit-solvent simulations
journal, January 2011

  • Camilloni, Carlo; Broglia, Ricardo A.; Tiana, Guido
  • The Journal of Chemical Physics, Vol. 134, Issue 4
  • DOI: 10.1063/1.3523345

Numerical analysis of Pickering emulsion stability: insights from ABMD simulations
journal, January 2016

  • Sicard, François; Striolo, Alberto
  • Faraday Discussions, Vol. 191
  • DOI: 10.1039/C6FD00055J

Energetics of ion conduction through the gramicidin channel
journal, December 2003

  • Allen, T. W.; Andersen, O. S.; Roux, B.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 1
  • DOI: 10.1073/pnas.2635314100

Theory and Simulation of Ion Conduction in the Pentameric GLIC Channel
journal, March 2012

  • Zhu, Fangqiang; Hummer, Gerhard
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 10
  • DOI: 10.1021/ct2009279

g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates
journal, November 2010

  • Hub, Jochen S.; de Groot, Bert L.; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 12
  • DOI: 10.1021/ct100494z

Assessing the Reliability of the Dynamics Reconstructed from Metadynamics
journal, March 2014

  • Salvalaglio, Matteo; Tiwary, Pratyush; Parrinello, Michele
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 4
  • DOI: 10.1021/ct500040r

Efficient Calculation of Microscopic Dissolution Rate Constants: The Aspirin–Water Interface
journal, October 2014

  • Schneider, Julian; Reuter, Karsten
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21
  • DOI: 10.1021/jz501939c

Molecular-dynamics simulations of urea nucleation from aqueous solution
journal, December 2014

  • Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 1
  • DOI: 10.1073/pnas.1421192111

Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps
journal, January 2015

  • Tiwary, Pratyush; Limongelli, Vittorio; Salvalaglio, Matteo
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 5
  • DOI: 10.1073/pnas.1424461112

Role of water and steric constraints in the kinetics of cavity–ligand unbinding
journal, September 2015

  • Tiwary, Pratyush; Mondal, Jagannath; Morrone, Joseph A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 39
  • DOI: 10.1073/pnas.1516652112

Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution
journal, July 2017

  • Bochicchio, Davide; Salvalaglio, Matteo; Pavan, Giovanni M.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00189-0

Sampling protein motion and solvent effect during ligand binding
journal, January 2012

  • Limongelli, V.; Marinelli, L.; Cosconati, S.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 5
  • DOI: 10.1073/pnas.1112181108

Free energy landscapes of sodium ions bound to DMPC–cholesterol membrane surfaces at infinite dilution
journal, January 2016

  • Yang, Jing; Bonomi, Massimiliano; Calero, Carles
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 13
  • DOI: 10.1039/C5CP05527J

Resolving the problem of trapped water in binding cavities: prediction of host–guest binding free energies in the SAMPL5 challenge by funnel metadynamics
journal, August 2016

  • Bhakat, Soumendranath; Söderhjelm, Pär
  • Journal of Computer-Aided Molecular Design, Vol. 31, Issue 1
  • DOI: 10.1007/s10822-016-9948-6

Reaction-rate theory: fifty years after Kramers
journal, April 1990

  • Hänggi, Peter; Talkner, Peter; Borkovec, Michal
  • Reviews of Modern Physics, Vol. 62, Issue 2
  • DOI: 10.1103/RevModPhys.62.251

Reaction rate theory: What it was, where is it today, and where is it going?
journal, June 2005

  • Pollak, Eli; Talkner, Peter
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 15, Issue 2
  • DOI: 10.1063/1.1858782

Rate theories for biologists
journal, May 2010


Computing transition rates for rare events: When Kramers theory meets the free-energy landscape
journal, November 2018


Fluctuation–dissipation: Response theory in statistical physics
journal, June 2008


Energy landscape analysis of native folding of the prion protein yields the diffusion constant, transition path time, and rates
journal, August 2012

  • Yu, Hao; Gupta, Amar Nath; Liu, Xia
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 36
  • DOI: 10.1073/pnas.1206190109

Studies on hydrate film growth
journal, January 2010

  • Sun, C. Y.; Peng, B. Z.; Dandekar, A.
  • Annual Reports Section "C" (Physical Chemistry), Vol. 106
  • DOI: 10.1039/b811053k

Works referencing / citing this record:

How Do Surfactants Control the Agglomeration of Clathrate Hydrates?
journal, February 2019

  • Naullage, Pavithra M.; Bertolazzo, Andressa A.; Molinero, Valeria
  • ACS Central Science, Vol. 5, Issue 3
  • DOI: 10.1021/acscentsci.8b00755