DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Catalyst Phase on the Hydrogen Evolution Reaction of Water Splitting: Preparation of Phase-Pure Films of FeP, Fe2P, and Fe3 P and Their Relative Catalytic Activities

Abstract

The comparative catalytic activities of iron phosphides, FexP (x = 1–3), have been established with phase-pure material grown by chemical vapor deposition (CVD) from single-source organometallic precursors. This is the first report of the preparation of phase-pure thin films of FeP and Fe2P, and their identity was established with scanning-electron microscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction. All materials were deposited on fluorine-doped tin oxide (FTO) for evaluation of their activities toward the hydrogen evolution reaction (HER) of water splitting in 0.5 M H2SO4. HER activity follows the trend Fe3P > Fe2P > FeP, with Fe3P having the lowest overpotential of 49 mV at a current density of 10 mA cm–2. Density functional theory (DFT) calculations are congruent with the observed activity trend with hydrogen binding favoring the iron-rich terminating surfaces of Fe3P and Fe2P over the iron-poor terminating surfaces of FeP. The results present a clear trend of activity with iron-rich phosphide phases outperforming phosphorus rich phases for hydrogen evolution. The films of Fe2P were grown using Fe(CO)4PH3 (1), while the films of FeP were prepared using either Fe(CO)4PtBuH2 (2) or the new molecule {Fe(CO)4P(H)tBu}2 (3) on quartz and FTO. Compound 3 was prepared from the reaction ofmore » PCl2tBu with a mixture of Na[HFe(CO)4] and Na2[Fe(CO)4] and characterized by single-crystal X-ray diffraction, ESI-MS, elemental analysis, and 31P/1H NMR spectroscopies. Films of Fe3P were prepared as previously described from H2Fe3(CO)9PtBu (4).« less

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [2];  [4]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Rice Univ., Houston, TX (United States)
  2. Univ. of Houston, TX (United States); Univ. of Electronic Science and Technology of China, Chengdu (China)
  3. Univ. of Houston, TX (United States)
  4. Univ. of Electronic Science and Technology of China, Chengdu (China)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1543610
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 10; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Materials Science

Citation Formats

Schipper, Desmond E., Zhao, Zhenhuan, Thirumalai, Hari, Leitner, Andrew P., Donaldson, Samantha L., Kumar, Arvind, Qin, Fan, Wang, Zhiming, Grabow, Lars C., Bao, Jiming, and Whitmire, Kenton H. Effects of Catalyst Phase on the Hydrogen Evolution Reaction of Water Splitting: Preparation of Phase-Pure Films of FeP, Fe2P, and Fe3 P and Their Relative Catalytic Activities. United States: N. p., 2018. Web. doi:10.1021/acs.chemmater.8b01624.
Schipper, Desmond E., Zhao, Zhenhuan, Thirumalai, Hari, Leitner, Andrew P., Donaldson, Samantha L., Kumar, Arvind, Qin, Fan, Wang, Zhiming, Grabow, Lars C., Bao, Jiming, & Whitmire, Kenton H. Effects of Catalyst Phase on the Hydrogen Evolution Reaction of Water Splitting: Preparation of Phase-Pure Films of FeP, Fe2P, and Fe3 P and Their Relative Catalytic Activities. United States. https://doi.org/10.1021/acs.chemmater.8b01624
Schipper, Desmond E., Zhao, Zhenhuan, Thirumalai, Hari, Leitner, Andrew P., Donaldson, Samantha L., Kumar, Arvind, Qin, Fan, Wang, Zhiming, Grabow, Lars C., Bao, Jiming, and Whitmire, Kenton H. Thu . "Effects of Catalyst Phase on the Hydrogen Evolution Reaction of Water Splitting: Preparation of Phase-Pure Films of FeP, Fe2P, and Fe3 P and Their Relative Catalytic Activities". United States. https://doi.org/10.1021/acs.chemmater.8b01624. https://www.osti.gov/servlets/purl/1543610.
@article{osti_1543610,
title = {Effects of Catalyst Phase on the Hydrogen Evolution Reaction of Water Splitting: Preparation of Phase-Pure Films of FeP, Fe2P, and Fe3 P and Their Relative Catalytic Activities},
author = {Schipper, Desmond E. and Zhao, Zhenhuan and Thirumalai, Hari and Leitner, Andrew P. and Donaldson, Samantha L. and Kumar, Arvind and Qin, Fan and Wang, Zhiming and Grabow, Lars C. and Bao, Jiming and Whitmire, Kenton H.},
abstractNote = {The comparative catalytic activities of iron phosphides, FexP (x = 1–3), have been established with phase-pure material grown by chemical vapor deposition (CVD) from single-source organometallic precursors. This is the first report of the preparation of phase-pure thin films of FeP and Fe2P, and their identity was established with scanning-electron microscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction. All materials were deposited on fluorine-doped tin oxide (FTO) for evaluation of their activities toward the hydrogen evolution reaction (HER) of water splitting in 0.5 M H2SO4. HER activity follows the trend Fe3P > Fe2P > FeP, with Fe3P having the lowest overpotential of 49 mV at a current density of 10 mA cm–2. Density functional theory (DFT) calculations are congruent with the observed activity trend with hydrogen binding favoring the iron-rich terminating surfaces of Fe3P and Fe2P over the iron-poor terminating surfaces of FeP. The results present a clear trend of activity with iron-rich phosphide phases outperforming phosphorus rich phases for hydrogen evolution. The films of Fe2P were grown using Fe(CO)4PH3 (1), while the films of FeP were prepared using either Fe(CO)4PtBuH2 (2) or the new molecule {Fe(CO)4P(H)tBu}2 (3) on quartz and FTO. Compound 3 was prepared from the reaction of PCl2tBu with a mixture of Na[HFe(CO)4] and Na2[Fe(CO)4] and characterized by single-crystal X-ray diffraction, ESI-MS, elemental analysis, and 31P/1H NMR spectroscopies. Films of Fe3P were prepared as previously described from H2Fe3(CO)9PtBu (4).},
doi = {10.1021/acs.chemmater.8b01624},
journal = {Chemistry of Materials},
number = 10,
volume = 30,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A structural survey of the binary transition metal phosphides and arsenides of the d-block elements
journal, January 2018


The Fe-P (iron-phosphorus) system
journal, August 1990


Studies of the magnetic structure of Fe 3 P
journal, April 1974

  • Lisher, E. J.; Wilkinson, C.; Ericsson, T.
  • Journal of Physics C: Solid State Physics, Vol. 7, Issue 7
  • DOI: 10.1088/0022-3719/7/7/026

γ-FeP4, a new photosensitive semiconductor
journal, April 1987


Transition-metal-based magnetic refrigerants for room-temperature applications
journal, January 2002

  • Tegus, O.; Brück, E.; Buschow, K. H. J.
  • Nature, Vol. 415, Issue 6868
  • DOI: 10.1038/415150a

Low-Temperature Synthesis of Amorphous FeP 2 and Its Use as Anodes for Li Ion Batteries
journal, March 2012

  • Hall, Justin W.; Membreno, Nellymar; Wu, Jing
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja301173q

FeP:  Another Attractive Anode for the Li-Ion Battery Enlisting a Reversible Two-Step Insertion/Conversion Process
journal, July 2006

  • Boyanov, S.; Bernardi, J.; Gillot, F.
  • Chemistry of Materials, Vol. 18, Issue 15
  • DOI: 10.1021/cm060433m

Novel catalysts for advanced hydroprocessing: transition metal phosphides
journal, May 2003


Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction
journal, January 2013

  • Xu, You; Wu, Rui; Zhang, Jingfang
  • Chemical Communications, Vol. 49, Issue 59
  • DOI: 10.1039/c3cc43107j

Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles
journal, October 2014

  • Callejas, Juan F.; McEnaney, Joshua M.; Read, Carlos G.
  • ACS Nano, Vol. 8, Issue 11, p. 11101-11107
  • DOI: 10.1021/nn5048553

Efficient Water Oxidation Using CoMnP Nanoparticles
journal, March 2016

  • Li, Da; Baydoun, Habib; Verani, Cláudio N.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b01543

Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst
journal, May 2016


Synthesis of MoP decorated carbon cloth as a binder-free electrode for hydrogen evolution
journal, January 2016

  • Deng, Chen; Xie, Jiangzhou; Xue, Yifei
  • RSC Advances, Vol. 6, Issue 73
  • DOI: 10.1039/C6RA12456A

Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles
journal, January 2014

  • McEnaney, Joshua M.; Chance Crompton, J.; Callejas, Juan F.
  • Chemical Communications, Vol. 50, Issue 75
  • DOI: 10.1039/C4CC04709E

Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends
journal, January 2015

  • Kibsgaard, Jakob; Tsai, Charlie; Chan, Karen
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02179K

Boosting the Catalytic Performance of Iron Phosphide Nanorods for the Oxygen Evolution Reaction by Incorporation of Manganese
journal, March 2017


Unique Fe 2 P Nanoparticles Enveloped in Sandwichlike Graphited Carbon Sheets as Excellent Hydrogen Evolution Reaction Catalyst and Lithium-Ion Battery Anode
journal, November 2015

  • Zhang, Yan; Zhang, Huijuan; Feng, Yangyang
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 48
  • DOI: 10.1021/acsami.5b08620

A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution
journal, October 2015


Thin Films of (Fe 1– x Co x ) 3 P and Fe 3 (P 1– x Te x ) from the Co-Decomposition of Organometallic Precursors by MOCVD
journal, September 2016


Synthesis of Phase-Pure Ferromagnetic Fe3P Films from Single-Source Molecular Precursors
journal, February 2012

  • Colson, Adam C.; Chen, Chih-Wei; Morosan, Emilia
  • Advanced Functional Materials, Vol. 22, Issue 9
  • DOI: 10.1002/adfm.201102386

Synthesis of Hexagonal FeMnP Thin Films from a Single‐Source Molecular Precursor
journal, April 2017

  • Leitner, Andrew P.; Schipper, Desmond E.; Chen, Jing‐Han
  • Chemistry – A European Journal, Vol. 23, Issue 23
  • DOI: 10.1002/chem.201700203

A TiO 2 /FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution
journal, March 2017


Stoichiometry-controlled FeP nanoparticles synthesized from a single source precursor
journal, January 2013

  • Hunger, Cornelia; Ojo, Wilfried-Solo; Bauer, Susanne
  • Chemical Communications, Vol. 49, Issue 100
  • DOI: 10.1039/c3cc46863a

Bonding and energetics of phosphorus (III) ligands in transition metal complexes
journal, November 1994

  • Dias, Palmira B.; de Piedade, Manuel E. Minas; Simões, José A. Martinho
  • Coordination Chemistry Reviews, Vol. 135-136
  • DOI: 10.1016/0010-8545(94)80082-0

Reaction of Terminal Phosphinidene Complexes with Dihydrogen
journal, November 2011

  • Duffy, Matthew P.; Ting, Liow Yu; Nicholls, Leo
  • Organometallics, Vol. 31, Issue 7
  • DOI: 10.1021/om2009974

Simple Access to Tungsten-Stabilized Disecondary Diphosphines
journal, September 2013

  • Tian, Rongqiang; Mei, Yanbo; Duan, Zheng
  • Organometallics, Vol. 32, Issue 19
  • DOI: 10.1021/om400637j

The Photochemical Synthesis of Pentacarbonyliron(0) Derivatives
journal, June 1966

  • Schubert, E. H.; Sheline, R. K.
  • Inorganic Chemistry, Vol. 5, Issue 6
  • DOI: 10.1021/ic50040a024

?-Olefin-eisentetracarbonyl-Komplexe mit Liganden der Malein-, Fumar-, Acryl-, Methacryl- und Zimts�ure-Reihe
journal, January 1963


X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M 2 P and M 3 P ( M = Cr−Ni)
journal, November 2008

  • Blanchard, Peter E. R.; Grosvenor, Andrew P.; Cavell, Ronald G.
  • Chemistry of Materials, Vol. 20, Issue 22
  • DOI: 10.1021/cm802123a

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Defect-Rich MoS 2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
journal, August 2013


Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
journal, January 2016

  • Shi, Yanmei; Zhang, Bin
  • Chemical Society Reviews, Vol. 45, Issue 6, p. 1529-1541
  • DOI: 10.1039/C5CS00434A

Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution
journal, January 2012

  • Merki, Daniel; Vrubel, Heron; Rovelli, Lorenzo
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20539d

Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction
journal, October 2016


New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
journal, January 2014

  • Durst, J.; Siebel, A.; Simon, C.
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00440J

Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction
journal, April 2017


Vertically Aligned MoS 2 /Mo 2 C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution
journal, September 2017


Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting
journal, September 2017


The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation
journal, January 2016

  • Lv, Cuncai; Peng, Zhen; Zhao, Yaoxing
  • Journal of Materials Chemistry A, Vol. 4, Issue 4
  • DOI: 10.1039/C5TA08715E

A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting
journal, October 2015

  • Yan, Ya; Xia, Bao Yu; Ge, Xiaoming
  • Chemistry - A European Journal, Vol. 21, Issue 50
  • DOI: 10.1002/chem.201503777

Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction
journal, July 2016


FeP and FeP 2 nanowires for efficient electrocatalytic hydrogen evolution reaction
journal, January 2016

  • Son, Chang Yong; Kwak, In Hye; Lim, Young Rok
  • Chemical Communications, Vol. 52, Issue 13
  • DOI: 10.1039/C5CC09832G

Fe 2 P/reduced graphene oxide/Fe 2 P sandwich-structured nanowall arrays: a high-performance non-noble-metal electrocatalyst for hydrogen evolution
journal, January 2017

  • Liu, Meijun; Yang, Liming; Liu, Tian
  • Journal of Materials Chemistry A, Vol. 5, Issue 18
  • DOI: 10.1039/C7TA01791J

General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution
journal, May 2016

  • Read, Carlos G.; Callejas, Juan F.; Holder, Cameron F.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 20
  • DOI: 10.1021/acsami.6b02352

Active Role of Phosphorus in the Hydrogen Evolving Activity of Nickel Phosphide (0001) Surfaces
journal, October 2017

  • Wexler, Robert B.; Martirez, John Mark P.; Rappe, Andrew M.
  • ACS Catalysis, Vol. 7, Issue 11
  • DOI: 10.1021/acscatal.7b02761

Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals
journal, February 1991

  • Docherty, R.; Clydesdale, G.; Roberts, K. J.
  • Journal of Physics D: Applied Physics, Vol. 24, Issue 2
  • DOI: 10.1088/0022-3727/24/2/001

Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst
journal, May 2017

  • Chung, Dong Young; Jun, Samuel Woojoo; Yoon, Gabin
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01530

Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode
journal, January 2007

  • Skúlason, Egill; Karlberg, Gustav S.; Rossmeisl, Jan
  • Phys. Chem. Chem. Phys., Vol. 9, Issue 25
  • DOI: 10.1039/B700099E

Hydrogen Evolution Over Bimetallic Systems: Understanding the Trends
journal, May 2006

  • Greeley, Jeff; Nørskov, Jens K.; Kibler, Ludwig A.
  • ChemPhysChem, Vol. 7, Issue 5, p. 1032-1035
  • DOI: 10.1002/cphc.200500663

Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium
journal, January 2014

  • Kucernak, Anthony R. J.; Naranammalpuram Sundaram, Venkata N.
  • J. Mater. Chem. A, Vol. 2, Issue 41
  • DOI: 10.1039/C4TA03468F

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

MoS 2 Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution
journal, May 2013

  • Liao, Lei; Zhu, Jie; Bian, Xiaojun
  • Advanced Functional Materials, Vol. 23, Issue 42
  • DOI: 10.1002/adfm.201300318

Works referencing / citing this record:

In situ synthesis of Cu 3 P/g-C 3 N 4 heterojunction with superior photocatalytic hydrogen evolution
journal, September 2019

  • Sun, Wenjuan; Jia, Jia; Jin, Chenyang
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 46
  • DOI: 10.1088/1361-6463/ab36ca

FeP 3 monolayer as a high-efficiency catalyst for hydrogen evolution reaction
journal, January 2019

  • Zheng, Shuang; Yu, Tong; Lin, Jianyan
  • Journal of Materials Chemistry A, Vol. 7, Issue 44
  • DOI: 10.1039/c9ta09985a

Neighboring effect induced by V and Cr doping in FeCoP nanoarrays for the hydrogen evolution reaction with Pt-like performance
journal, January 2020

  • Xiong, Laifei; Wang, Bin; Cai, Hairui
  • Journal of Materials Chemistry A, Vol. 8, Issue 3
  • DOI: 10.1039/c9ta12562k

Amorphous Ni x Co y P-supported TiO 2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution
journal, January 2019

  • Li, Yong; Yang, Peng; Wang, Bin
  • Beilstein Journal of Nanotechnology, Vol. 10
  • DOI: 10.3762/bjnano.10.6

Multifunctional Transition Metal‐Based Phosphides in Energy‐Related Electrocatalysis
journal, September 2019

  • Li, Yang; Dong, Zihao; Jiao, Lifang
  • Advanced Energy Materials, Vol. 10, Issue 11
  • DOI: 10.1002/aenm.201902104

Magnetocaloric materials: From micro- to nanoscale
journal, November 2018

  • Belo, João H.; Pires, Ana L.; Araújo, João P.
  • Journal of Materials Research, Vol. 34, Issue 1
  • DOI: 10.1557/jmr.2018.352

Mechanisms for hydrogen evolution on transition metal phosphide catalysts and a comparison to Pt(111)
journal, January 2019

  • Li, Chenyang; Gao, Hao; Wan, Wan
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 44
  • DOI: 10.1039/c9cp05094a

Metal–Organic Framework‐Derived Fe/Co‐based Bifunctional Electrode for H 2 Production through Water and Urea Electrolysis
journal, October 2019

  • Singh, Thangjam Ibomcha; Rajeshkhanna, Gaddam; Singh, Soram Bobby
  • ChemSusChem, Vol. 12, Issue 21
  • DOI: 10.1002/cssc.201902232

In pursuit of advanced materials from single-source precursors based on metal carbonyls
journal, January 2019

  • Whitmire, Kenton H.; Schipper, Desmond E.
  • Dalton Transactions, Vol. 48, Issue 7
  • DOI: 10.1039/c8dt03406k