DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon

Abstract

During ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. This study utilizes a combination of arrest peptide experiments and coarse-grained molecular dynamics to measure and elucidate the molecular origins of forces that are exerted on NCs during cotranslational membrane insertion and translocation via the Sec translocon. The approach enables deconvolution of force contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. In particular, we show that forces due to NC-lipid interactions provide a readout of conformational changes in the Sec translocon, demonstrating that lateral gate opening only occurs when a sufficiently hydrophobic segment of NC residues reaches the translocon. The combination of experiment and theory introduced here provides a detailed picture of the molecular interactions and conformational changes during ribosomal translation that govern protein biogenesis.

Authors:
 [1];  [2];  [2];  [2];  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  2. Stockholm Univ. (Sweden)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1543513
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Biophysical Journal
Additional Journal Information:
Journal Volume: 115; Journal Issue: 10; Journal ID: ISSN 0006-3495
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Biophysics

Citation Formats

Niesen, Michiel J. M., Müller-Lucks, Annika, Hedman, Rickard, von Heijne, Gunnar, and Miller, Thomas F. Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. United States: N. p., 2018. Web. doi:10.1016/j.bpj.2018.10.002.
Niesen, Michiel J. M., Müller-Lucks, Annika, Hedman, Rickard, von Heijne, Gunnar, & Miller, Thomas F. Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. United States. https://doi.org/10.1016/j.bpj.2018.10.002
Niesen, Michiel J. M., Müller-Lucks, Annika, Hedman, Rickard, von Heijne, Gunnar, and Miller, Thomas F. Wed . "Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon". United States. https://doi.org/10.1016/j.bpj.2018.10.002. https://www.osti.gov/servlets/purl/1543513.
@article{osti_1543513,
title = {Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon},
author = {Niesen, Michiel J. M. and Müller-Lucks, Annika and Hedman, Rickard and von Heijne, Gunnar and Miller, Thomas F.},
abstractNote = {During ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. This study utilizes a combination of arrest peptide experiments and coarse-grained molecular dynamics to measure and elucidate the molecular origins of forces that are exerted on NCs during cotranslational membrane insertion and translocation via the Sec translocon. The approach enables deconvolution of force contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. In particular, we show that forces due to NC-lipid interactions provide a readout of conformational changes in the Sec translocon, demonstrating that lateral gate opening only occurs when a sufficiently hydrophobic segment of NC residues reaches the translocon. The combination of experiment and theory introduced here provides a detailed picture of the molecular interactions and conformational changes during ribosomal translation that govern protein biogenesis.},
doi = {10.1016/j.bpj.2018.10.002},
journal = {Biophysical Journal},
number = 10,
volume = 115,
place = {United States},
year = {Wed Oct 10 00:00:00 EDT 2018},
month = {Wed Oct 10 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Characterization of the physical processes that drive integration of a hydrophobic transmembrane domain. (a) CGMD simulation setup used to calculate pulling forces acting on an engineered hydrophobic H segment (orange) during co-translational integration. Shown is a CGMD snapshot at $L$= 28 ; the C-terminal bead is held fixedmore » and forces exerted by the nascent protein on that bead are calculated. (b) Experimental data reproduced from ref (26). Two peaks in the pulling-force profile are observed during the co-translational integration of the hydrophobic H segment. (c) CGMD data for H segments of varying Leucine content. Vertical dashed lines indicate the position of the corresponding peaks in the experimental results. (d-f) Representative CGMD configurations at $L$= 28 (d), $L$=39 (e), and $L$=57 (f). (g) CGMD pulling-force profiles for an H segment with nine leucine residues with default interactions (orange), non-specific lipid interactions (teal), and nonspecific channel interactions (purple). (h) The maximum value of $f$FL for the peak near $L$= 28 (teal) and the peak near $L$=39 (purple), obtained from CGMD (solid lines) and experiment (26) (dashed lines). Error bars indicate the standard error of the mean. Figure S2 provides an alternate version of this figure for which the simulated curves are scaled to enable easier comparison.« less

Save / Share:

Works referenced in this record:

Long-Timescale Dynamics and Regulation of Sec-Facilitated Protein Translocation
journal, October 2012


Direct Simulation of Early-Stage Sec-Facilitated Protein Translocation
journal, August 2012

  • Zhang, Bin; Miller, Thomas F.
  • Journal of the American Chemical Society, Vol. 134, Issue 33
  • DOI: 10.1021/ja3034526

Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes
journal, September 2010

  • Egea, P. F.; Stroud, R. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 40
  • DOI: 10.1073/pnas.1012556107

X-ray structure of a protein-conducting channel
journal, December 2003

  • Berg, Bert van den; Clemons, William M.; Collinson, Ian
  • Nature, Vol. 427, Issue 6969
  • DOI: 10.1038/nature02218

Cryo-EM structure of the ribosome–SecYE complex in the membrane environment
journal, April 2011

  • Frauenfeld, Jens; Gumbart, James; Sluis, Eli O. van der
  • Nature Structural & Molecular Biology, Vol. 18, Issue 5
  • DOI: 10.1038/nsmb.2026

Cotranslational folding of membrane proteins probed by arrest-peptide–mediated force measurements
journal, August 2013

  • Cymer, Florian; von Heijne, Gunnar
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 36
  • DOI: 10.1073/pnas.1306787110

Charge-driven dynamics of nascent-chain movement through the SecYEG translocon
journal, January 2015

  • Ismail, Nurzian; Hedman, Rickard; Lindén, Martin
  • Nature Structural & Molecular Biology, Vol. 22, Issue 2
  • DOI: 10.1038/nsmb.2940

Molecular mechanism of signal sequence orientation in the endoplasmic reticulum
journal, July 2003


Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion
journal, February 2014

  • Gogala, Marko; Becker, Thomas; Beatrix, Birgitta
  • Nature, Vol. 506, Issue 7486
  • DOI: 10.1038/nature12950

Cotranslational folding of spectrin domains via partially structured states
journal, January 2017

  • Nilsson, Ola B.; Nickson, Adrian A.; Hollins, Jeffrey J.
  • Nature Structural & Molecular Biology, Vol. 24, Issue 3
  • DOI: 10.1038/nsmb.3355

Energetics of Membrane Protein Folding
journal, May 2014


A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function
journal, December 2012

  • Trueman, Steven F.; Mandon, Elisabet C.; Gilmore, Reid
  • Journal of Cell Biology, Vol. 199, Issue 6
  • DOI: 10.1083/jcb.201207163

Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution
journal, June 2014


Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes
journal, November 2007


Hydrophobically stabilized open state for the lateral gate of the Sec translocon
journal, March 2010

  • Zhang, B.; Miller, T. F.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 12
  • DOI: 10.1073/pnas.0914752107

Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion
journal, October 2014

  • Ge, Yan; Draycheva, Albena; Bornemann, Thomas
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6263

Dual-topology insertion of a dual-topology membrane protein
journal, August 2015

  • Woodall, Nicholas B.; Yin, Ying; Bowie, James U.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9099

Theory, analysis, and interpretation of single-molecule force spectroscopy experiments
journal, October 2008

  • Dudko, O. K.; Hummer, G.; Szabo, A.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 41
  • DOI: 10.1073/pnas.0806085105

Recognition of transmembrane helices by the endoplasmic reticulum translocon
journal, January 2005

  • Hessa, Tara; Kim, Hyun; Bihlmaier, Karl
  • Nature, Vol. 433, Issue 7024
  • DOI: 10.1038/nature03216

Mechanisms of Integral Membrane Protein Insertion and Folding
journal, March 2015

  • Cymer, Florian; von Heijne, Gunnar; White, Stephen H.
  • Journal of Molecular Biology, Vol. 427, Issue 5
  • DOI: 10.1016/j.jmb.2014.09.014

A Link between Integral Membrane Protein Expression and Simulated Integration Efficiency
journal, August 2016


Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo
journal, April 2015


Transmembrane helices before, during, and after insertion
journal, August 2005


Protein Translocation Across the Bacterial Cytoplasmic Membrane
journal, June 2008


Membrane Protein Insertion at the Endoplasmic Reticulum
journal, November 2011


Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads
journal, June 2017


Decrypting protein insertion through the translocon with free-energy calculations
journal, July 2016

  • Gumbart, James C.; Chipot, Christophe
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1858, Issue 7
  • DOI: 10.1016/j.bbamem.2016.02.017

A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration
journal, September 2012

  • Ismail, Nurzian; Hedman, Rickard; Schiller, Nina
  • Nature Structural & Molecular Biology, Vol. 19, Issue 10
  • DOI: 10.1038/nsmb.2376

Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum.
journal, February 1992

  • Stirling, C. J.; Rothblatt, J.; Hosobuchi, M.
  • Molecular Biology of the Cell, Vol. 3, Issue 2
  • DOI: 10.1091/mbc.3.2.129

The Hydrophobic Core of the Sec61 Translocon Defines the Hydrophobicity Threshold for Membrane Integration
journal, May 2010

  • Junne, Tina; Kocik, Lucyna; Spiess, Martin
  • Molecular Biology of the Cell, Vol. 21, Issue 10
  • DOI: 10.1091/mbc.e10-01-0060

Experimentally determined hydrophobicity scale for proteins at membrane interfaces
journal, October 1996

  • Wimley, William C.; White, Stephen H.
  • Nature Structural & Molecular Biology, Vol. 3, Issue 10
  • DOI: 10.1038/nsb1096-842

On the Nature of the Apparent Free Energy of Inserting Amino Acids into Membrane through the Translocon
journal, October 2013

  • Rychkova, Anna; Warshel, Arieh
  • The Journal of Physical Chemistry B, Vol. 117, Issue 44
  • DOI: 10.1021/jp406925y

Divergent stalling sequences sense and control cellular physiology
journal, February 2010

  • Ito, Koreaki; Chiba, Shinobu; Pogliano, Kit
  • Biochemical and Biophysical Research Communications, Vol. 393, Issue 1
  • DOI: 10.1016/j.bbrc.2010.01.073

Functional asymmetry within the Sec61p translocon
journal, November 2013

  • Demirci, E.; Junne, T.; Baday, S.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 47
  • DOI: 10.1073/pnas.1318432110

The Sec61p Complex Mediates the Integration of a Membrane Protein by Allowing Lipid Partitioning of the Transmembrane Domain
journal, July 2000


Mutations in the Sec61p Channel Affecting Signal Sequence Recognition and Membrane Protein Topology
journal, September 2007

  • Junne, Tina; Schwede, Torsten; Goder, Veit
  • Journal of Biological Chemistry, Vol. 282, Issue 45
  • DOI: 10.1074/jbc.M707219200

Improving membrane protein expression by optimizing integration efficiency
journal, September 2017

  • Niesen, Michiel J. M.; Marshall, Stephen S.; Miller, Thomas F.
  • Journal of Biological Chemistry, Vol. 292, Issue 47
  • DOI: 10.1074/jbc.M117.813469

Regulation of multispanning membrane protein topology via post-translational annealing
journal, September 2015


Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration
journal, March 2017


XSEDE: Accelerating Scientific Discovery
journal, September 2014

  • Towns, John; Cockerill, Timothy; Dahan, Maytal
  • Computing in Science & Engineering, Vol. 16, Issue 5
  • DOI: 10.1109/MCSE.2014.80

Cotranslational folding of spectrin domains via partially structured states.
journalarticle, January 2017

  • Nilsson, Ob; Nickson, Aa; Hollins, Jj
  • Nature Publishing Group
  • DOI: 10.17863/cam.8181

The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration
text, January 2010


Cryo-EM structure of the ribosome–SecYE complex in the membrane environment
journal, April 2011

  • Frauenfeld, Jens; Gumbart, James; Sluis, Eli O. van der
  • Nature Structural & Molecular Biology, Vol. 18, Issue 5
  • DOI: 10.1038/nsmb.2026

Charge-driven dynamics of nascent-chain movement through the SecYEG translocon
journal, January 2015

  • Ismail, Nurzian; Hedman, Rickard; Lindén, Martin
  • Nature Structural & Molecular Biology, Vol. 22, Issue 2
  • DOI: 10.1038/nsmb.2940

Works referencing / citing this record:

Partially inserted nascent chain unzips the lateral gate of the Sec translocon
journal, August 2019


Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein
journal, May 2020

  • Harrington, Haley R.; Zimmer, Matthew H.; Chamness, Laura M.
  • Journal of Biological Chemistry, Vol. 295, Issue 20
  • DOI: 10.1074/jbc.ra120.012706

Domain topology, stability, and translation speed determine mechanical force generation on the ribosome
journal, March 2019

  • Leininger, Sarah E.; Trovato, Fabio; Nissley, Daniel A.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 12
  • DOI: 10.1073/pnas.1813003116

A snapshot of membrane protein insertion
journal, September 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.