skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction

Abstract

Single-atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1–2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen-doped carbon nanotubes (MSA-N-CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g., 20 wt% in the case of NiSA-N-CNTs, using a new multistep pyrolysis process. Among these materials, NiSA-N-CNTs show an excellent selectivity and activity for the electrochemical reduction of CO2 to CO, achieving a turnover frequency (TOF) of 11.7 s-1 at -0.55 V (vs reversible hydrogen electrode (RHE)), two orders of magnitude higher than Ni nanoparticles supported on CNTs.

Authors:
 [1];  [1];  [2];  [1];  [3];  [1];  [4];  [4];  [5];  [6];  [7];  [5]; ORCiD logo [1]
  1. Curtin Univ., Perth (Australia)
  2. Australian Nuclear Science and Technology Organisation (ANSTO), Melbourne, VIC (Australia). Australian Synchrotron
  3. Univ. of Western Australia, Perth, WA (Australia)
  4. Chinese Academy of Sciences (CAS), Beijing (China)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Curtin Univ., Perth (Australia); Univ. of Queensland, Brisbane (Australia); Univ. of Sunshine Coast, Maroochydore (Australia)
  7. Chinese Academy of Sciences (CAS), Beijing (China); Tsinghua Univ., Beijing (China); King Abdulaziz Univ., Jeddah (Saudi Arabia)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1543459
Alternate Identifier(s):
OSTI ID: 1419993
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 13; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Chemistry; Science & Technology - Other Topics; Materials Science; Physics

Citation Formats

Cheng, Yi, Zhao, Shiyong, Johannessen, Bernt, Veder, Jean-Pierre, Saunders, Martin, Rowles, Matthew R., Cheng, Min, Liu, Chang, Chisholm, Matthew F., De Marco, Roland, Cheng, Hui-Ming, Yang, Shi-Ze, and Jiang, San Ping. Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. United States: N. p., 2018. Web. doi:10.1002/adma.201706287.
Cheng, Yi, Zhao, Shiyong, Johannessen, Bernt, Veder, Jean-Pierre, Saunders, Martin, Rowles, Matthew R., Cheng, Min, Liu, Chang, Chisholm, Matthew F., De Marco, Roland, Cheng, Hui-Ming, Yang, Shi-Ze, & Jiang, San Ping. Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. United States. doi:10.1002/adma.201706287.
Cheng, Yi, Zhao, Shiyong, Johannessen, Bernt, Veder, Jean-Pierre, Saunders, Martin, Rowles, Matthew R., Cheng, Min, Liu, Chang, Chisholm, Matthew F., De Marco, Roland, Cheng, Hui-Ming, Yang, Shi-Ze, and Jiang, San Ping. Fri . "Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction". United States. doi:10.1002/adma.201706287. https://www.osti.gov/servlets/purl/1543459.
@article{osti_1543459,
title = {Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction},
author = {Cheng, Yi and Zhao, Shiyong and Johannessen, Bernt and Veder, Jean-Pierre and Saunders, Martin and Rowles, Matthew R. and Cheng, Min and Liu, Chang and Chisholm, Matthew F. and De Marco, Roland and Cheng, Hui-Ming and Yang, Shi-Ze and Jiang, San Ping},
abstractNote = {Single-atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1–2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen-doped carbon nanotubes (MSA-N-CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g., 20 wt% in the case of NiSA-N-CNTs, using a new multistep pyrolysis process. Among these materials, NiSA-N-CNTs show an excellent selectivity and activity for the electrochemical reduction of CO2 to CO, achieving a turnover frequency (TOF) of 11.7 s-1 at -0.55 V (vs reversible hydrogen electrode (RHE)), two orders of magnitude higher than Ni nanoparticles supported on CNTs.},
doi = {10.1002/adma.201706287},
journal = {Advanced Materials},
number = 13,
volume = 30,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Characterization of NiSA-N-CNTs. A) Scanning electron microscopy (SEM) image, B) Transmission electron microscopy (TEM) image. C) STEM-EDS mapping. D) AC-STEM-annular dark field (ADF) images showing the atomic dispersion of Ni in NiSA-N-CNTs, E) ADF image showing the Ni single atoms located on the walls of a CNT (Themore » red circles show typical Ni atoms embedded in the carbon plane of walls. The insert is the Fourier transform of E). F) ADF images showing structure environment of Ni single atoms. G) Raman spectra and H) XRD patterns of NiSA-N-CNTs, Ni-N-CNTs and N-CNTs.« less

Save / Share:

Works referenced in this record:

Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO 2
journal, June 2017

  • Zhao, Changming; Dai, Xinyao; Yao, Tao
  • Journal of the American Chemical Society, Vol. 139, Issue 24
  • DOI: 10.1021/jacs.7b02736

Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction
journal, January 2016

  • Li, Xiyu; Cui, Peng; Zhong, Wenhui
  • Chemical Communications, Vol. 52, Issue 90
  • DOI: 10.1039/C6CC07049C

Selective Conversion of CO 2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst
journal, June 2013

  • DiMeglio, John L.; Rosenthal, Joel
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja4033549

Tackling CO Poisoning with Single-Atom Alloy Catalysts
journal, May 2016

  • Liu, Jilei; Lucci, Felicia R.; Yang, Ming
  • Journal of the American Chemical Society, Vol. 138, Issue 20
  • DOI: 10.1021/jacs.6b03339

Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO 2 Reduction
journal, November 2016


Exceptional Size-Dependent Activity Enhancement in the Electroreduction of CO 2 over Au Nanoparticles
journal, November 2014

  • Mistry, Hemma; Reske, Rulle; Zeng, Zhenhua
  • Journal of the American Chemical Society, Vol. 136, Issue 47
  • DOI: 10.1021/ja508879j

Nickel L-Edge Soft X-ray Spectroscopy of Nickel−Iron Hydrogenases and Model CompoundsEvidence for High-Spin Nickel(II) in the Active Enzyme
journal, November 2000

  • Wang, Hongxin; Ralston, C. Y.; Patil, D. S.
  • Journal of the American Chemical Society, Vol. 122, Issue 43
  • DOI: 10.1021/ja000945g

Utilization of Electropolymerized Films of Cobalt Porphyrin for the Reduction of Carbon Dioxide in Aqueous Media
journal, October 2016


Molecule-Level g-C 3 N 4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions
journal, February 2017

  • Zheng, Yao; Jiao, Yan; Zhu, Yihan
  • Journal of the American Chemical Society, Vol. 139, Issue 9
  • DOI: 10.1021/jacs.6b13100

Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production
journal, October 2015


A General Approach to Preferential Formation of Active Fe–N x Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction
journal, November 2016

  • Sa, Young Jin; Seo, Dong-Jun; Woo, Jinwoo
  • Journal of the American Chemical Society, Vol. 138, Issue 45
  • DOI: 10.1021/jacs.6b09470

Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion
journal, April 2017


Only a supporting role
journal, September 2013


A Stable Single-Site Palladium Catalyst for Hydrogenations
journal, July 2015

  • Vilé, Gianvito; Albani, Davide; Nachtegaal, Maarten
  • Angewandte Chemie International Edition, Vol. 54, Issue 38
  • DOI: 10.1002/anie.201505073

Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO 2 Electroreduction
journal, August 2015


A Local Proton Source Enhances CO 2 Electroreduction to CO by a Molecular Fe Catalyst
journal, October 2012


Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions
journal, December 2016

  • Chen, Pengzuo; Zhou, Tianpei; Xing, Lili
  • Angewandte Chemie International Edition, Vol. 56, Issue 2
  • DOI: 10.1002/anie.201610119

Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh 3 ) 3
journal, November 2016

  • Lang, Rui; Li, Tianbo; Matsumura, Daiju
  • Angewandte Chemie International Edition, Vol. 55, Issue 52
  • DOI: 10.1002/anie.201607885

Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts
journal, July 2016

  • Ma, Ming; Trześniewski, Bartek J.; Xie, Jie
  • Angewandte Chemie International Edition, Vol. 55, Issue 33
  • DOI: 10.1002/anie.201604654

X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases
journal, March 1991

  • Colpas, Gerard J.; Maroney, Michael J.; Bagyinka, Csaba.
  • Inorganic Chemistry, Vol. 30, Issue 5
  • DOI: 10.1021/ic00005a010

Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO 2 to CO
journal, October 2013

  • Zhu, Wenlei; Michalsky, Ronald; Metin, Önder
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja409445p

Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values
journal, March 2014

  • Zou, Xiaoxin; Huang, Xiaoxi; Goswami, Anandarup
  • Angewandte Chemie, Vol. 126, Issue 17
  • DOI: 10.1002/ange.201311111

Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis
journal, April 2013

  • Yang, Xiao-Feng; Wang, Aiqin; Qiao, Botao
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300361m

Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO 2 Reduction
journal, July 2015


The Current Performance of the Wide Range (90–2500 eV) Soft X-ray Beamline at the Australian Synchrotron
conference, January 2010

  • Cowie, B. C. C.; Tadich, A.; Thomsen, L.
  • SRI 2009, 10TH INTERNATIONAL CONFERENCE ON RADIATION INSTRUMENTATION, AIP Conference Proceedings
  • DOI: 10.1063/1.3463197

Single-atom catalysis of CO oxidation using Pt1/FeOx
journal, July 2011

  • Qiao, Botao; Wang, Aiqin; Yang, Xiaofeng
  • Nature Chemistry, Vol. 3, Issue 8
  • DOI: 10.1038/nchem.1095

Improved catalysts for hydrogen evolution reaction in alkaline solutions through the electrochemical formation of nickel-reduced graphene oxide interface
journal, January 2017

  • Gutić, Sanjin J.; Dobrota, Ana S.; Leetmaa, Mikael
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 20
  • DOI: 10.1039/C7CP01237C

Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO 2
journal, July 2017

  • Vasileff, Anthony; Zheng, Yao; Qiao, Shi Zhang
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201700759

Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media
journal, August 2017

  • Zhang, Lihan; Han, Lili; Liu, Haoxuan
  • Angewandte Chemie International Edition, Vol. 56, Issue 44
  • DOI: 10.1002/anie.201706921

Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions
journal, December 2015

  • Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo
  • Angewandte Chemie International Edition, Vol. 55, Issue 6
  • DOI: 10.1002/anie.201509241

Stabilizing a Platinum 1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity
journal, May 2016

  • Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia
  • Angewandte Chemie International Edition, Vol. 55, Issue 29
  • DOI: 10.1002/anie.201602801

Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide
journal, May 2016

  • Gao, Guoping; Jiao, Yan; Waclawik, Eric R.
  • Journal of the American Chemical Society, Vol. 138, Issue 19
  • DOI: 10.1021/jacs.6b02692

The preparation of chromium, nickel and chromium–nickel alloy nanoparticles on supports
journal, January 2002

  • Tilley, Richard D.; Jefferson, David A.
  • J. Mater. Chem., Vol. 12, Issue 12
  • DOI: 10.1039/B204774H

In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles
journal, April 2007

  • Rodríguez-Manzo, Julio A.; Terrones, Mauricio; Terrones, Humberto
  • Nature Nanotechnology, Vol. 2, Issue 5
  • DOI: 10.1038/nnano.2007.107

    Works referencing / citing this record:

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.