DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering

Abstract

The key to understanding the cycling mechanism of lithium-ion battery electrodes is to develop methods to monitor the dynamic cell chemistry, but the complexity of the problem has continued to pose an obstacle. Here we describe the use of operando small-angle neutron scattering (SANS) to show directly how the use of concentrated LiTFSI electrolyte in Li/ordered mesoporous carbon (OMC) half-cells influences the mechanism of solid electrolyte interphase (SEI) formation, lithium intercalation, and carbon framework expansion. We find that a complex interplay between the viscosity, lithium solvation shell and electrode microstructure in the concentrated 4 M electrolyte changes the dynamics of SEI formation and pore filling at a given applied potential. Both the filling of micropores and co-intercalation are found to drive the expansion of the carbon framework. Lithium-rich reduction products form at much higher potentials in the micropores of the 4 M electrolyte system, while on mesopore surfaces the lithium-rich salts form quickly before giving way to carbonaceous products. As a result, this study reveals operando SANS as a unique method for providing microstructure dependent information on the dynamics of electrochemical processes.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1543225
Alternate Identifier(s):
OSTI ID: 1493369
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 12; Journal Issue: 6; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Jafta, Charl J., Sun, Xiao -Guang, Veith, Gabriel M., Jensen, Grethe V., Mahurin, Shannon Mark, Paranthaman, Mariappan P., Dai, Sheng, and Bridges, Craig A. Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering. United States: N. p., 2019. Web. doi:10.1039/C8EE02703J.
Jafta, Charl J., Sun, Xiao -Guang, Veith, Gabriel M., Jensen, Grethe V., Mahurin, Shannon Mark, Paranthaman, Mariappan P., Dai, Sheng, & Bridges, Craig A. Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering. United States. https://doi.org/10.1039/C8EE02703J
Jafta, Charl J., Sun, Xiao -Guang, Veith, Gabriel M., Jensen, Grethe V., Mahurin, Shannon Mark, Paranthaman, Mariappan P., Dai, Sheng, and Bridges, Craig A. Fri . "Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering". United States. https://doi.org/10.1039/C8EE02703J. https://www.osti.gov/servlets/purl/1543225.
@article{osti_1543225,
title = {Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering},
author = {Jafta, Charl J. and Sun, Xiao -Guang and Veith, Gabriel M. and Jensen, Grethe V. and Mahurin, Shannon Mark and Paranthaman, Mariappan P. and Dai, Sheng and Bridges, Craig A.},
abstractNote = {The key to understanding the cycling mechanism of lithium-ion battery electrodes is to develop methods to monitor the dynamic cell chemistry, but the complexity of the problem has continued to pose an obstacle. Here we describe the use of operando small-angle neutron scattering (SANS) to show directly how the use of concentrated LiTFSI electrolyte in Li/ordered mesoporous carbon (OMC) half-cells influences the mechanism of solid electrolyte interphase (SEI) formation, lithium intercalation, and carbon framework expansion. We find that a complex interplay between the viscosity, lithium solvation shell and electrode microstructure in the concentrated 4 M electrolyte changes the dynamics of SEI formation and pore filling at a given applied potential. Both the filling of micropores and co-intercalation are found to drive the expansion of the carbon framework. Lithium-rich reduction products form at much higher potentials in the micropores of the 4 M electrolyte system, while on mesopore surfaces the lithium-rich salts form quickly before giving way to carbonaceous products. As a result, this study reveals operando SANS as a unique method for providing microstructure dependent information on the dynamics of electrochemical processes.},
doi = {10.1039/C8EE02703J},
journal = {Energy & Environmental Science},
number = 6,
volume = 12,
place = {United States},
year = {Fri Jan 25 00:00:00 EST 2019},
month = {Fri Jan 25 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Golden-Toad Eggs toward a Binder-Free, High-Rate, and Flexible Electrode
journal, June 2016


Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Effect of co-intercalated organic solvents in graphite on electrochemical Li intercalation
journal, November 2001


Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution
journal, January 2001

  • Jeong, Soon-Ki; Inaba, Minoru; Abe, Takeshi
  • Journal of The Electrochemical Society, Vol. 148, Issue 9
  • DOI: 10.1149/1.1387981

Severe Loss of Confined Sulfur in Nanoporous Carbon for Li–S Batteries under Wetting Conditions
journal, January 2018


Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries
journal, September 2013

  • Xu, Ji-Jing; Wang, Zhong-Li; Xu, Dan
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3438

Design of electrolyte solutions for Li and Li-ion batteries: a review
journal, November 2004


Distribution of Sulfur in Carbon/Sulfur Nanocomposites Analyzed by Small-Angle X-ray Scattering
journal, March 2016


Electrochemical storage of energy in carbon nanotubes and nanostructured carbons
journal, August 2002


Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes
journal, July 2015

  • Yamada, Yuki; Chiang, Ching Hua; Sodeyama, Keitaro
  • ChemElectroChem, Vol. 2, Issue 11
  • DOI: 10.1002/celc.201500235

Phase diagram of Li x C 6
journal, November 1991


Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

In Situ AFM Observation of Surface Morphology of Highly Oriented Pyrolytic Graphite in Propylene Carbonate-Based Electrolyte Solutions Containing Lithium and Bivalent Cations
journal, December 2016

  • Fukutsuka, Tomokazu; Kokumai, Ryohei; Song, Hee-Youb
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.0191702jes

The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology
journal, June 1998

  • Glinka, C. J.; Barker, J. G.; Hammouda, B.
  • Journal of Applied Crystallography, Vol. 31, Issue 3, p. 430-445
  • DOI: 10.1107/S0021889897017020

Correlating Li + Solvation Sheath Structure with Interphasial Chemistry on Graphite
journal, December 2012

  • von Wald Cresce, Arthur; Borodin, Oleg; Xu, Kang
  • The Journal of Physical Chemistry C, Vol. 116, Issue 50
  • DOI: 10.1021/jp303610t

Electrolyte Solvation and Ionic Association
journal, January 2012

  • Seo, Daniel M.; Borodin, Oleg; Han, Sang-Don
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.jes112264

Lithium NMR in Lithium-Carbon Solid State Compounds
journal, January 2000


"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Electrochemistry and Structural Chemistry of LiNiO[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1993

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 140, Issue 7
  • DOI: 10.1149/1.2220730

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure
journal, November 2000

  • Jun, Shinae; Joo, Sang Hoon; Ryoo, Ryong
  • Journal of the American Chemical Society, Vol. 122, Issue 43
  • DOI: 10.1021/ja002261e

Co-embedded N-doped carbon fibers as highly efficient and binder-free cathode for Na–O 2 batteries
journal, January 2017


Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
journal, July 2018


Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces
journal, March 2016

  • Leung, Kevin; Soto, Fernando; Hankins, Kie
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.5b11719

Aluminum corrosion in electrolyte of Li-ion battery
journal, July 2002


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Structural and Electrochemical Properties of Li Ion Solvation Complexes in the Salt-Concentrated Electrolytes Using an Aprotic Donor Solvent, N , N -Dimethylformamide
journal, July 2016

  • Fujii, Kenta; Wakamatsu, Hideaki; Todorov, Yanko
  • The Journal of Physical Chemistry C, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpcc.6b04542

Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte
journal, June 2014

  • Sodeyama, Keitaro; Yamada, Yuki; Aikawa, Koharu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 26, p. 14091-14097
  • DOI: 10.1021/jp501178n

General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes
journal, March 2014

  • Yamada, Yuki; Usui, Kenji; Chiang, Ching Hua
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14, p. 10892-10899
  • DOI: 10.1021/am5001163

In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering
journal, March 2012

  • Bridges, Craig A.; Sun, Xiao-Guang; Zhao, Jinkui
  • The Journal of Physical Chemistry C, Vol. 116, Issue 14
  • DOI: 10.1021/jp3012393

Correlation between Charge−Discharge Behavior of Graphite and Solvation Structure of the Lithium Ion in Propylene Carbonate-Containing Electrolytes
journal, May 2009

  • Yamada, Yuki; Koyama, Yasuhiro; Abe, Takeshi
  • The Journal of Physical Chemistry C, Vol. 113, Issue 20
  • DOI: 10.1021/jp9022458

Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications
journal, March 2017

  • Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander
  • Advanced Science, Vol. 4, Issue 8
  • DOI: 10.1002/advs.201700032

Carbon materials for lithium-ion rechargeable batteries
journal, February 1999


Mesoporous Carbon Materials: Synthesis and Modification
journal, May 2008

  • Liang, Chengdu; Li, Zuojiang; Dai, Sheng
  • Angewandte Chemie International Edition, Vol. 47, Issue 20, p. 3696-3717
  • DOI: 10.1002/anie.200702046

Cycling performance and surface analysis of Lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite
journal, November 2016


On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
journal, September 1999


In Situ Raman Study on Electrochemical Li Intercalation into Graphite
journal, January 1995

  • Inaba, Minoru
  • Journal of The Electrochemical Society, Vol. 142, Issue 1
  • DOI: 10.1149/1.2043869

Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte
journal, June 2013


Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF 6 in Propylene Carbonate
journal, November 2013

  • Nie, Mengyun; Abraham, Daniel P.; Seo, Daniel M.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 48
  • DOI: 10.1021/jp409765w

In situ analyses for ion storage materials
journal, January 2016

  • Yang, Junghoon; Muhammad, Shoaib; Jo, Mi Ru
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00734H

Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?
journal, January 2015

  • Kerner, M.; Plylahan, N.; Scheers, J.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 29
  • DOI: 10.1039/C5CP01891A

Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes
journal, April 1995


Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates
journal, January 2004

  • Vollmer, James M.; Curtiss, Larry A.; Vissers, Donald R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 1
  • DOI: 10.1149/1.1633765

The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
journal, January 2001

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 8
  • DOI: 10.1149/1.1379565

Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries
journal, January 2012

  • Xu, Dan; Wang, Zhong-li; Xu, Ji-jing
  • Chemical Communications, Vol. 48, Issue 55
  • DOI: 10.1039/c2cc32844e

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

In Situ Observation of Electrolyte-Concentration-Dependent Solid Electrolyte Interphase on Graphite in Dimethyl Sulfoxide
journal, April 2015

  • Liu, Xing-Rui; Wang, Lin; Wan, Li-Jun
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b01024

Structure Characterization and Lithiation Mechanism of Nongraphitized Carbon for Lithium Secondary Batteries
journal, January 2006

  • Nagao, Miki; Pitteloud, Cédric; Kamiyama, Takashi
  • Journal of The Electrochemical Society, Vol. 153, Issue 5
  • DOI: 10.1149/1.2184908

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, December 2004


Electrolyte Solvation and Ionic Association: VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited
journal, January 2015

  • Borodin, Oleg; Han, Sang-Don; Daubert, James S.
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0891503jes

Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes
journal, October 2015

  • Yamada, Yuki; Chiang, Ching Hua; Sodeyama, Keitaro
  • ChemElectroChem, Vol. 2, Issue 11
  • DOI: 10.1002/celc.201500426

Electrolyte Solvation and Ionic Association: V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures
journal, January 2014

  • Han, Sang-Don; Borodin, Oleg; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0101414jes

Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes
text, January 2014


Works referencing / citing this record:

Understanding Rechargeable Battery Function Using In Operando Neutron Powder Diffraction
journal, September 2019


Electrochemically induced crystallization of amorphous materials in molten MgCl 2 : boron nitride and hard carbon
journal, January 2020

  • Bagri, Prashant; P. Thapaliya, Bishnu; Yang, Zhenzhen
  • Chemical Communications, Vol. 56, Issue 18
  • DOI: 10.1039/c9cc08717f