skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 28, 2020

Title: The all configuration mean energy multiconfiguration self-consistent-field method. I. Equal configuration weights

Abstract

The All Configuration Mean Energy (ACME) conditions are a special case of state averaging for Multiconfigurational Self-Consistent-Field (MCSCF) orbital optimisation. The method is formulated using the Graphical Unitary Group Approach (GUGA) in which the Configuration State Function (CSF) basis is represented as walks within a Shavitt graph. This graphical formulation leads to efficient recursive algorithms for the energy and reduced density matrices (RDM) that are independent of the CSF dimension and that scale only as O(n2) where n is the number of occupied orbitals. The Hamiltonian matrix diagonalization step is obviated and the CSF expansion coefficients are neither referenced nor required. This allows MCSCF orbital optimisation to be performed for essentially unlimited numbers of active orbitals and arbitrarily large CSF expansions. The discussion includes various types of CSF expansion spaces, the partitioning of the essential and redundant orbital optimisation parameters, the computation of the spin-density, and the formulation of state-specific analytic gradients and nonadiabatic coupling for high-level electronic structure methods that use the ACME MCSCF orbitals.

Authors:
 [1];  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1543139
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Physics
Additional Journal Information:
Journal Volume: 117; Journal Issue: 17; Journal ID: ISSN 0026-8976
Publisher:
Taylor & Francis
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; MCSCF; analytic gradient; electronic structure; nonadiabatic coupling; state averaging

Citation Formats

Shepard, Ron, and Brozell, Scott R. The all configuration mean energy multiconfiguration self-consistent-field method. I. Equal configuration weights. United States: N. p., 2019. Web. doi:10.1080/00268976.2019.1635275.
Shepard, Ron, & Brozell, Scott R. The all configuration mean energy multiconfiguration self-consistent-field method. I. Equal configuration weights. United States. doi:10.1080/00268976.2019.1635275.
Shepard, Ron, and Brozell, Scott R. Fri . "The all configuration mean energy multiconfiguration self-consistent-field method. I. Equal configuration weights". United States. doi:10.1080/00268976.2019.1635275.
@article{osti_1543139,
title = {The all configuration mean energy multiconfiguration self-consistent-field method. I. Equal configuration weights},
author = {Shepard, Ron and Brozell, Scott R.},
abstractNote = {The All Configuration Mean Energy (ACME) conditions are a special case of state averaging for Multiconfigurational Self-Consistent-Field (MCSCF) orbital optimisation. The method is formulated using the Graphical Unitary Group Approach (GUGA) in which the Configuration State Function (CSF) basis is represented as walks within a Shavitt graph. This graphical formulation leads to efficient recursive algorithms for the energy and reduced density matrices (RDM) that are independent of the CSF dimension and that scale only as O(n2) where n is the number of occupied orbitals. The Hamiltonian matrix diagonalization step is obviated and the CSF expansion coefficients are neither referenced nor required. This allows MCSCF orbital optimisation to be performed for essentially unlimited numbers of active orbitals and arbitrarily large CSF expansions. The discussion includes various types of CSF expansion spaces, the partitioning of the essential and redundant orbital optimisation parameters, the computation of the spin-density, and the formulation of state-specific analytic gradients and nonadiabatic coupling for high-level electronic structure methods that use the ACME MCSCF orbitals.},
doi = {10.1080/00268976.2019.1635275},
journal = {Molecular Physics},
number = 17,
volume = 117,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 28, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications
journal, December 2011

  • Szalay, Péter G.; Müller, Thomas; Gidofalvi, Gergely
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200137a

MCSCF optimization through combined use of natural orbitals and the brillouin-levy-berthier theorem
journal, November 1979

  • Ruedenberg, K.; Cheung, L. M.; Elbert, S. T.
  • International Journal of Quantum Chemistry, Vol. 16, Issue 5
  • DOI: 10.1002/qua.560160511

Multiconfiguration wavefunctions for excited states. Selection of optimal configurations: The b1 Σ + and d1 Σ + states of NH
journal, February 1977

  • Banerjee, Ajit; Grein, F.
  • The Journal of Chemical Physics, Vol. 66, Issue 3
  • DOI: 10.1063/1.434061

Optimization of orbitals for multiconfigurational reference states
journal, October 1978

  • Dalgaard, Esper; Jo/rgensen, Poul
  • The Journal of Chemical Physics, Vol. 69, Issue 8
  • DOI: 10.1063/1.437049

A Comparison of the Super-CI and the Newton-Raphson Scheme in the Complete Active Space SCF Method
journal, January 1980


General second order MCSCF theory: A density matrix directed algorithm
journal, July 1980

  • Lengsfield, Byron H.
  • The Journal of Chemical Physics, Vol. 73, Issue 1
  • DOI: 10.1063/1.439885

The Construction and Interpretation of Mcscf Wavefunctions
journal, October 1998


Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
journal, November 2017

  • Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe
  • The Journal of Chemical Physics, Vol. 147, Issue 18
  • DOI: 10.1063/1.4989858

The self‐consistent electron pairs method for multiconfiguration reference state functions
journal, March 1982

  • Werner, Hans‐Joachim; Reinsch, Ernst‐Albrecht
  • The Journal of Chemical Physics, Vol. 76, Issue 6
  • DOI: 10.1063/1.443357

Comparison of multireference configuration interaction potential energy surfaces for H + O2 → HO2: the effect of internal contraction
journal, December 2013

  • Harding, Lawrence B.; Klippenstein, Stephen J.; Lischka, Hans
  • Theoretical Chemistry Accounts, Vol. 133, Issue 2
  • DOI: 10.1007/s00214-013-1429-6

Columbus-a program system for advanced multireference theory calculations: The Columbus multireference program system
journal, January 2011

  • Lischka, Hans; Müller, Thomas; Szalay, Péter G.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 2
  • DOI: 10.1002/wcms.25

Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table : Molcas 8
journal, November 2015

  • Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K.
  • Journal of Computational Chemistry, Vol. 37, Issue 5
  • DOI: 10.1002/jcc.24221

The multifacet graphically contracted function method. I. Formulation and implementation
journal, August 2014

  • Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.
  • The Journal of Chemical Physics, Vol. 141, Issue 6
  • DOI: 10.1063/1.4890734

Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function
journal, July 2013

  • Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
  • The Journal of Chemical Physics, Vol. 139, Issue 4
  • DOI: 10.1063/1.4816627

Orbital Entanglement in Bond-Formation Processes
journal, June 2013

  • Boguslawski, Katharina; Tecmer, Paweł; Barcza, Gergely
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 7
  • DOI: 10.1021/ct400247p

The Density Matrix Renormalization Group in Quantum Chemistry
journal, May 2011


On the spin and symmetry adaptation of the density matrix renormalization group method
journal, January 2008

  • Zgid, Dominika; Nooijen, Marcel
  • The Journal of Chemical Physics, Vol. 128, Issue 1
  • DOI: 10.1063/1.2814150

Multireference Nature of Chemistry: The Coupled-Cluster View
journal, December 2011

  • Lyakh, Dmitry I.; Musiał, Monika; Lotrich, Victor F.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr2001417

Two-Electron Reduced Density Matrix as the Basic Variable in Many-Electron Quantum Chemistry and Physics
journal, August 2011


Canonical transformation theory for multireference problems
journal, May 2006

  • Yanai, Takeshi; Chan, Garnet Kin-Lic
  • The Journal of Chemical Physics, Vol. 124, Issue 19
  • DOI: 10.1063/1.2196410

Canonical transformation theory from extended normal ordering
journal, September 2007

  • Yanai, Takeshi; Chan, Garnet Kin-Lic
  • The Journal of Chemical Physics, Vol. 127, Issue 10
  • DOI: 10.1063/1.2761870

Atomic self-consistent-field program by the basis set expansion method: Columbus version
journal, August 2005


SCF theory for excited states: I. Optimal orbitals for the states of a configuration
journal, November 1974


Hamiltonian Matrix and Reduced Density Matrix Construction with Nonlinear Wave Functions
journal, July 2006

  • Shepard, Ron
  • The Journal of Physical Chemistry A, Vol. 110, Issue 28
  • DOI: 10.1021/jp060336g

The accuracy of molecular bond lengths computed by multireference electronic structure methods
journal, June 2008


Localized Atomic and Molecular Orbitals
journal, July 1963


Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
journal, August 1988

  • Olsen, Jeppe; Roos, Björn O.; Jo/rgensen, Poul
  • The Journal of Chemical Physics, Vol. 89, Issue 4
  • DOI: 10.1063/1.455063

On the evaluation of analytic energy derivatives for correlated wave functions
journal, December 1984

  • Handy, Nicholas C.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 81, Issue 11
  • DOI: 10.1063/1.447489

The evaluation of spin-density matrices within the graphically contracted function method
journal, December 2009

  • Gidofalvi, Gergely; Shepard, Ron
  • International Journal of Quantum Chemistry, Vol. 109, Issue 15
  • DOI: 10.1002/qua.22320

Wave function analysis with Shavitt graph density in the graphically contracted function method
journal, July 2014

  • Gidofalvi, Gergely; Brozell, Scott R.; Shepard, Ron
  • Theoretical Chemistry Accounts, Vol. 133, Issue 9
  • DOI: 10.1007/s00214-014-1512-7

Optimization of nonlinear wave function parameters
journal, January 2006

  • Shepard, Ron; Minkoff, Michael
  • International Journal of Quantum Chemistry, Vol. 106, Issue 15
  • DOI: 10.1002/qua.21140