DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topological and electrical properties of capped and annealed (0001) hydride vapor phase epitaxy GaN films on sapphire

Abstract

In light of the necessity to anneal GaN to activate implanted dopants, the effects of the annealing temperature and time, the quality of the hydride vapor phase epitaxy grown GaN film, the quality of the annealing cap, and the effects of the stresses generated by the difference in the coefficients of thermal expansion of the film and the substrate are examined topographically using atomic force microscopy, and electrical measurements are made on Schottky diodes fabricated on the annealed samples. Here the results show that thermal decomposition begins at threading edge dislocations that form polygonized small angle grain boundaries during the annealing process; donor defects, probably nitrogen vacancies, are formed near the surface; and the donors are created more quickly when the annealing temperature is higher, the annealing time is longer, and the thermal stresses on the annealing cap are greater. The results suggest that the maximum annealing temperature is ~1300 °C, and at that annealing temperature, the annealing time should not exceed 4 min.

Authors:
ORCiD logo [1];  [1]
  1. Army Research Laboratory, Adelphi, MD (United States)
Publication Date:
Research Org.:
Army Research Laboratory, Adelphi, MD (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1494811
Alternate Identifier(s):
OSTI ID: 1543051
Grant/Contract Number:  
AR0000872
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 126; Journal Issue: 3; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; crystallographic defects; semiconductors; electrical properties and parameters; Schottky diodes; electric measurements; materials heat treatment; atomic force microscopy; piezoelectric materials; thermal effects; thin films

Citation Formats

Derenge, Michael A., and Jones, Kenneth A. Topological and electrical properties of capped and annealed (0001) hydride vapor phase epitaxy GaN films on sapphire. United States: N. p., 2019. Web. doi:10.1063/1.5092437.
Derenge, Michael A., & Jones, Kenneth A. Topological and electrical properties of capped and annealed (0001) hydride vapor phase epitaxy GaN films on sapphire. United States. https://doi.org/10.1063/1.5092437
Derenge, Michael A., and Jones, Kenneth A. Thu . "Topological and electrical properties of capped and annealed (0001) hydride vapor phase epitaxy GaN films on sapphire". United States. https://doi.org/10.1063/1.5092437. https://www.osti.gov/servlets/purl/1494811.
@article{osti_1494811,
title = {Topological and electrical properties of capped and annealed (0001) hydride vapor phase epitaxy GaN films on sapphire},
author = {Derenge, Michael A. and Jones, Kenneth A.},
abstractNote = {In light of the necessity to anneal GaN to activate implanted dopants, the effects of the annealing temperature and time, the quality of the hydride vapor phase epitaxy grown GaN film, the quality of the annealing cap, and the effects of the stresses generated by the difference in the coefficients of thermal expansion of the film and the substrate are examined topographically using atomic force microscopy, and electrical measurements are made on Schottky diodes fabricated on the annealed samples. Here the results show that thermal decomposition begins at threading edge dislocations that form polygonized small angle grain boundaries during the annealing process; donor defects, probably nitrogen vacancies, are formed near the surface; and the donors are created more quickly when the annealing temperature is higher, the annealing time is longer, and the thermal stresses on the annealing cap are greater. The results suggest that the maximum annealing temperature is ~1300 °C, and at that annealing temperature, the annealing time should not exceed 4 min.},
doi = {10.1063/1.5092437},
journal = {Journal of Applied Physics},
number = 3,
volume = 126,
place = {United States},
year = {Thu Jul 18 00:00:00 EDT 2019},
month = {Thu Jul 18 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dislocations and stacking faults in hexagonal GaN
journal, June 2011

  • Batyrev, I. G.; Sarney, W. L.; Zheleva, T. S.
  • physica status solidi (a), Vol. 208, Issue 7
  • DOI: 10.1002/pssa.201001061

Annealing studies of AlN capped, MOCVD grown GaN films
journal, November 2014

  • Derenge, Michael A.; Kirchner, Kevin W.; Jones, Kenneth A.
  • Solid-State Electronics, Vol. 101
  • DOI: 10.1016/j.sse.2014.06.027

GaN decomposition in H2 and N2 at MOVPE temperatures and pressures
journal, March 2001


Si-implantation activation annealing of GaN up to 1400°C
journal, April 1998


Failure mechanism of AlN nanocaps used to protect rare earth-implanted GaN during high temperature annealing
journal, January 2006

  • Nogales, E.; Martin, R. W.; O’Donnell, K. P.
  • Applied Physics Letters, Vol. 88, Issue 3
  • DOI: 10.1063/1.2162797

Role of nitrogen vacancies in the luminescence of Mg-doped GaN
journal, April 2012

  • Yan, Qimin; Janotti, Anderson; Scheffler, Matthias
  • Applied Physics Letters, Vol. 100, Issue 14
  • DOI: 10.1063/1.3699009

Si implant-assisted Ohmic contacts to GaN
journal, October 2010


On the nitrogen vacancy in GaN
journal, October 2003

  • Look, D. C.; Farlow, G. C.; Drevinsky, P. J.
  • Applied Physics Letters, Vol. 83, Issue 17
  • DOI: 10.1063/1.1623009

Wet chemical etching of AlN
journal, August 1995

  • Mileham, J. R.; Pearton, S. J.; Abernathy, C. R.
  • Applied Physics Letters, Vol. 67, Issue 8
  • DOI: 10.1063/1.114980

Silicon implantation in epitaxial GaN layers: Encapsulant annealing and electrical properties
journal, March 2004

  • Matsunaga, S.; Yoshida, S.; Kawaji, T.
  • Journal of Applied Physics, Vol. 95, Issue 5
  • DOI: 10.1063/1.1644896

Surface analysis of GaN decomposition
journal, October 2002


Electrical activation characteristics of silicon-implanted GaN
journal, April 2005

  • Irokawa, Y.; Fujishima, O.; Kachi, T.
  • Journal of Applied Physics, Vol. 97, Issue 8
  • DOI: 10.1063/1.1863458

Activation of ion implanted Si in GaN using a dual AlN annealing cap
journal, February 2009

  • Hager, C. E.; Jones, K. A.; Derenge, M. A.
  • Journal of Applied Physics, Vol. 105, Issue 3
  • DOI: 10.1063/1.3068317

Thermal stability of GaN investigated by Raman scattering
journal, August 1998

  • Kuball, M.; Demangeot, F.; Frandon, J.
  • Applied Physics Letters, Vol. 73, Issue 7
  • DOI: 10.1063/1.122052

Origin of hexagonal-shaped etch pits formed in (0001) GaN films
journal, July 2000

  • Hong, S. K.; Yao, T.; Kim, B. J.
  • Applied Physics Letters, Vol. 77, Issue 1
  • DOI: 10.1063/1.126884

Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN
journal, January 1984


Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals
journal, January 2015


CAVET on Bulk GaN Substrates Achieved With MBE-Regrown AlGaN/GaN Layers to Suppress Dispersion
journal, January 2012

  • Chowdhury, Srabanti; Wong, Man Hoi; Swenson, Brian L.
  • IEEE Electron Device Letters, Vol. 33, Issue 1
  • DOI: 10.1109/LED.2011.2173456

Thermal activation of Mg-doped GaN as monitored by electron paramagnetic resonance spectroscopy
journal, February 2004

  • Zvanut, M. E.; Matlock, D. M.; Henry, R. L.
  • Journal of Applied Physics, Vol. 95, Issue 4
  • DOI: 10.1063/1.1639954

Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN
journal, March 2004

  • Liu, Y.; Kauser, M. Z.; Nathan, M. I.
  • Applied Physics Letters, Vol. 84, Issue 12
  • DOI: 10.1063/1.1689392