skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells

Abstract

Ten novel fullerene-derivatives (FDs) of C60 and C70 had been designed as acceptor for polymer solar cell (PSC) by employing the quantitative structure-property relationship (QSPR) model, which was developed strategically with a reasonably big pool of experimental power conversion efficiency (PCE) data. The QSPR model was checked and validated with stringent parameter and reliability of predicted PCE values of all designed FDs. They were assessed by the applicability domain (AD) and process randomization test. The predicted PCE of FDs range from 7.96 to 23.01. The obtained encouraging results led us to the additional theoretical analysis of the energetics and UV-Vis spectra of isolated dyes employing Density functional theory (DFT) and Time-dependent-DFT (TD-DFT) calculations using PBE/6-31G(d,p) and CAM-B3LYP/6-311G(d,p) level calculations, respectively. The FD4 is the best C60-derivatives candidates for PSCs as it has the lowest exciton binding energy, up-shifted lowest unoccupied molecular orbital (LUMO) energy level to increase open-circuit voltage (VOC) and strong absorption in the UV region. In case of C70-derivatives, FD7 is potential candidate for future PSCs due to its strong absorption in UV-Vis region and lower exciton binding energy with higher VOC. Our optoelectronic results strongly support the developed QSPR model equation. Analyzing QSPR model and optoelectronic parameters,more » we concluded that the FD1, FD2, FD4, and FD10 are the most potential candidates for acceptor fragment of fullerene-based PSC. The outcomes of tactical molecular design followed by the investigation of optoelectronic features are suggested to be employed as a significant resource for the synthesis of FDs as an acceptor of PSCs.« less

Authors:
ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1543015
Grant/Contract Number:  
SC0018322
Resource Type:
Published Article
Journal Name:
Materials
Additional Journal Information:
Journal Name: Materials Journal Volume: 12 Journal Issue: 14; Journal ID: ISSN 1996-1944
Publisher:
MDPI AG
Country of Publication:
Switzerland
Language:
English

Citation Formats

Roy, Juganta K., Kar, Supratik, and Leszczynski, Jerzy. Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells. Switzerland: N. p., 2019. Web. doi:10.3390/ma12142282.
Roy, Juganta K., Kar, Supratik, & Leszczynski, Jerzy. Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells. Switzerland. doi:10.3390/ma12142282.
Roy, Juganta K., Kar, Supratik, and Leszczynski, Jerzy. Tue . "Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells". Switzerland. doi:10.3390/ma12142282.
@article{osti_1543015,
title = {Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells},
author = {Roy, Juganta K. and Kar, Supratik and Leszczynski, Jerzy},
abstractNote = {Ten novel fullerene-derivatives (FDs) of C60 and C70 had been designed as acceptor for polymer solar cell (PSC) by employing the quantitative structure-property relationship (QSPR) model, which was developed strategically with a reasonably big pool of experimental power conversion efficiency (PCE) data. The QSPR model was checked and validated with stringent parameter and reliability of predicted PCE values of all designed FDs. They were assessed by the applicability domain (AD) and process randomization test. The predicted PCE of FDs range from 7.96 to 23.01. The obtained encouraging results led us to the additional theoretical analysis of the energetics and UV-Vis spectra of isolated dyes employing Density functional theory (DFT) and Time-dependent-DFT (TD-DFT) calculations using PBE/6-31G(d,p) and CAM-B3LYP/6-311G(d,p) level calculations, respectively. The FD4 is the best C60-derivatives candidates for PSCs as it has the lowest exciton binding energy, up-shifted lowest unoccupied molecular orbital (LUMO) energy level to increase open-circuit voltage (VOC) and strong absorption in the UV region. In case of C70-derivatives, FD7 is potential candidate for future PSCs due to its strong absorption in UV-Vis region and lower exciton binding energy with higher VOC. Our optoelectronic results strongly support the developed QSPR model equation. Analyzing QSPR model and optoelectronic parameters, we concluded that the FD1, FD2, FD4, and FD10 are the most potential candidates for acceptor fragment of fullerene-based PSC. The outcomes of tactical molecular design followed by the investigation of optoelectronic features are suggested to be employed as a significant resource for the synthesis of FDs as an acceptor of PSCs.},
doi = {10.3390/ma12142282},
journal = {Materials},
number = 14,
volume = 12,
place = {Switzerland},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.3390/ma12142282

Save / Share:

Works referenced in this record:

Bulk heterojunction solar cells with internal quantum efficiency approaching 100%
journal, April 2009

  • Park, Sung Heum; Roy, Anshuman; Beaupré, Serge
  • Nature Photonics, Vol. 3, Issue 5, p. 297-302
  • DOI: 10.1038/nphoton.2009.69

Polymer–Fullerene Composite Solar Cells
journal, January 2008

  • Thompson, Barry C.; Fréchet, Jean M. J.
  • Angewandte Chemie International Edition, Vol. 47, Issue 1, p. 58-77
  • DOI: 10.1002/anie.200702506