skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 11, 2020

Title: Interactions of Polyproline II Helix Peptides with Iron(III) Oxide

Abstract

Interactions of a peptide with polyproline II helical secondary structure with maghemite (iron(III) oxide, Fe 2O 3) surfaces were characterized using a variety of surface techniques. A quartz crystal microbalance with dissipation was used to measure the hydrated mass and thickness (92 ± 29 ng/cm 2 and 0.89 ± 0.27 nm, respectively) of a layer which formed after a sensor coated with Fe 2O 3 was exposed to the peptide in aqueous solution. The analysis revealed that the peptide formed a stable thin layer on the sensor. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the monolayer were employed to study the relationship between the metal and the peptide. Finally, Fe 2O 3 nanoparticles were incubated with the peptide, and analysis of the settling and particle size revealed that the presence of the peptide reduced the occurrence of large aggregates in solution.

Authors:
 [1];  [2];  [1];  [1];  [2];  [1]
  1. Case Western Reserve Univ., Cleveland, OH (United States)
  2. Univ. of Arkansas, Fayetteville, AR (United States)
Publication Date:
Research Org.:
Univ. of Arkansas, Fayetteville, AR (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1542899
Grant/Contract Number:  
SC0016529
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry Select
Additional Journal Information:
Journal Volume: 4; Journal Issue: 22; Journal ID: ISSN 2365-6549
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Loney, Charles N., Perez Bakovic, Sergio I., Xu, Cheyan, Graybill, Ashley, Greenlee, Lauren F., and Renner, Julie N. Interactions of Polyproline II Helix Peptides with Iron(III) Oxide. United States: N. p., 2019. Web. doi:10.1002/slct.201901817.
Loney, Charles N., Perez Bakovic, Sergio I., Xu, Cheyan, Graybill, Ashley, Greenlee, Lauren F., & Renner, Julie N. Interactions of Polyproline II Helix Peptides with Iron(III) Oxide. United States. doi:10.1002/slct.201901817.
Loney, Charles N., Perez Bakovic, Sergio I., Xu, Cheyan, Graybill, Ashley, Greenlee, Lauren F., and Renner, Julie N. Tue . "Interactions of Polyproline II Helix Peptides with Iron(III) Oxide". United States. doi:10.1002/slct.201901817.
@article{osti_1542899,
title = {Interactions of Polyproline II Helix Peptides with Iron(III) Oxide},
author = {Loney, Charles N. and Perez Bakovic, Sergio I. and Xu, Cheyan and Graybill, Ashley and Greenlee, Lauren F. and Renner, Julie N.},
abstractNote = {Interactions of a peptide with polyproline II helical secondary structure with maghemite (iron(III) oxide, Fe2O3) surfaces were characterized using a variety of surface techniques. A quartz crystal microbalance with dissipation was used to measure the hydrated mass and thickness (92 ± 29 ng/cm2 and 0.89 ± 0.27 nm, respectively) of a layer which formed after a sensor coated with Fe2O3 was exposed to the peptide in aqueous solution. The analysis revealed that the peptide formed a stable thin layer on the sensor. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the monolayer were employed to study the relationship between the metal and the peptide. Finally, Fe2O3 nanoparticles were incubated with the peptide, and analysis of the settling and particle size revealed that the presence of the peptide reduced the occurrence of large aggregates in solution.},
doi = {10.1002/slct.201901817},
journal = {Chemistry Select},
number = 22,
volume = 4,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 11, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Magnetic iron oxide nanoparticles for biomedical applications
journal, March 2010

  • Laurent, Sophie; Bridot, Jean-Luc; Elst, Luce Vander
  • Future Medicinal Chemistry, Vol. 2, Issue 3
  • DOI: 10.4155/fmc.09.164

Catalysts for nitrogen reduction to ammonia
journal, July 2018

  • Foster, Shelby L.; Bakovic, Sergio I. Perez; Duda, Royce D.
  • Nature Catalysis, Vol. 1, Issue 7
  • DOI: 10.1038/s41929-018-0092-7

High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates
journal, March 1999

  • Josephson, Lee; Tung, Ching-Hsuan; Moore, Anna
  • Bioconjugate Chemistry, Vol. 10, Issue 2
  • DOI: 10.1021/bc980125h

Protease-Specific Nanosensors for Magnetic Resonance Imaging
journal, December 2008

  • Schellenberger, Eyk; Rudloff, Franziska; Warmuth, Carsten
  • Bioconjugate Chemistry, Vol. 19, Issue 12
  • DOI: 10.1021/bc800330k

Ultrasmall c(RGDyK)-Coated Fe 3 O 4 Nanoparticles and Their Specific Targeting to Integrin α v β 3 -Rich Tumor Cells
journal, June 2008

  • Xie, Jin; Chen, Kai; Lee, Ha-Young
  • Journal of the American Chemical Society, Vol. 130, Issue 24
  • DOI: 10.1021/ja802003h

Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10–NGR9 ultrasmall superparamagnetic iron oxide nanoparticles
journal, September 2017


In vivo imaging of siRNA delivery and silencing in tumors
journal, February 2007

  • Medarova, Zdravka; Pham, Wellington; Farrar, Christian
  • Nature Medicine, Vol. 13, Issue 3
  • DOI: 10.1038/nm1486

Targeted Delivery of Antisense Inhibitor of miRNA for Antiangiogenesis Therapy Using cRGD-Functionalized Nanoparticles
journal, December 2010

  • Liu, Xi-Qiu; Song, Wen-Jing; Sun, Tian-Meng
  • Molecular Pharmaceutics, Vol. 8, Issue 1
  • DOI: 10.1021/mp100315q

Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal
journal, November 2017


Clavanin A-bioconjugated Fe 3 O 4 /Silane core-shell nanoparticles for thermal ablation of bacterial biofilms
journal, September 2018


Nature of Interactions of Amino Acids with Bare Magnetite Nanoparticles
journal, September 2015

  • Schwaminger, Sebastian P.; García, Paula Fraga; Merck, Georg K.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 40
  • DOI: 10.1021/acs.jpcc.5b07195

Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures
journal, January 2001

  • Sousa, M. H.; Rubim, J. C.; Sobrinho, P. G.
  • Journal of Magnetism and Magnetic Materials, Vol. 225, Issue 1-2
  • DOI: 10.1016/S0304-8853(00)01229-4

Magnetic γ-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II)
journal, January 2009

  • White, Brianna R.; Stackhouse, Brandon T.; Holcombe, James A.
  • Journal of Hazardous Materials, Vol. 161, Issue 2-3
  • DOI: 10.1016/j.jhazmat.2008.04.105

l-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization
journal, September 2009

  • Durmus, Zehra; Kavas, Hüseyin; Toprak, Muhammet Sadaka
  • Journal of Alloys and Compounds, Vol. 484, Issue 1-2
  • DOI: 10.1016/j.jallcom.2009.04.103

Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid
journal, February 2009


In situ surface functionalization of magnetic nanoparticles with hydrophilic natural amino acids
journal, July 2012


Left-handed Polyproline II Helices Commonly Occur in Globular Proteins
journal, January 1993

  • Adzhubei, Alexei A.; Sternberg, Michael J. E.
  • Journal of Molecular Biology, Vol. 229, Issue 2
  • DOI: 10.1006/jmbi.1993.1047

A survey of left-handed polyproline II helices
journal, January 1999

  • Stapley, Benjamin J.; Creamer, Trevor P.
  • Protein Science, Vol. 8, Issue 3
  • DOI: 10.1110/ps.8.3.587

Poly(Pro)II Helixes in Globular Proteins: Identification and Circular Dichroic Analysis
journal, August 1994

  • Sreerama, Narasimha; Woody, Robert W.
  • Biochemistry, Vol. 33, Issue 33
  • DOI: 10.1021/bi00199a028

Properties of polyproline II, a secondary structure element implicated in protein-protein interactions
journal, January 2005

  • Cubellis, M. V.; Caillez, F.; Blundell, T. L.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 58, Issue 4
  • DOI: 10.1002/prot.20327

Sequence, Structure, and Function of Peptide Self-Assembled Monolayers
journal, March 2012

  • Nowinski, Ann K.; Sun, Fang; White, Andrew D.
  • Journal of the American Chemical Society, Vol. 134, Issue 13
  • DOI: 10.1021/ja3006868

Polyproline-II Helix in Proteins: Structure and Function
journal, June 2013

  • Adzhubei, Alexei A.; Sternberg, Michael J. E.; Makarov, Alexander A.
  • Journal of Molecular Biology, Vol. 425, Issue 12
  • DOI: 10.1016/j.jmb.2013.03.018

Adsorption Kinetics of an Engineered Gold Binding Peptide by Surface Plasmon Resonance Spectroscopy and a Quartz Crystal Microbalance
journal, August 2006

  • Tamerler, Candan; Oren, Ersin Emre; Duman, Memed
  • Langmuir, Vol. 22, Issue 18
  • DOI: 10.1021/la0606897

Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung
journal, April 1959


Formation Process and Solvent-Dependent Structure of a Polyproline Self-Assembled Monolayer on a Gold Surface
journal, October 2011

  • Han, Ying; Noguchi, Hidenori; Sakaguchi, Kazuyasu
  • Langmuir, Vol. 27, Issue 19
  • DOI: 10.1021/la2020995

QCM-D and Reflectometry Instrument: Applications to Supported Lipid Structures and Their Biomolecular Interactions
journal, January 2009

  • Edvardsson, Malin; Svedhem, Sofia; Wang, Guoliang
  • Analytical Chemistry, Vol. 81, Issue 1
  • DOI: 10.1021/ac801523w

Multi-functional biomimetic graphene induced transformation of Fe 3 O 4 to ε-Fe 2 O 3 at room temperature
journal, January 2015

  • Bhattacharya, Soumya; Roychowdhury, Anirban; Das, Dipankar
  • RSC Advances, Vol. 5, Issue 109
  • DOI: 10.1039/C5RA17247K

Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction
journal, April 2014

  • Zubir, Nor Aida; Yacou, Christelle; Motuzas, Julius
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04594

Comprehensive design of carbon-encapsulated Fe 3 O 4 nanocrystals and their lithium storage properties
journal, November 2012


Pyrite surface environment drives molecular adsorption: cystine on pyrite(100) investigated by X-ray photoemission spectroscopy and low energy electron diffraction
journal, January 2016

  • Sanchez-Arenillas, M.; Mateo-Marti, E.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 39
  • DOI: 10.1039/C6CP03760G

Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries
journal, February 2017

  • Qu, Bin; Sun, Yue; Liu, Lianlian
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep42772

Water Adsorption on α-Fe 2 O 3 (0001) at near Ambient Conditions
journal, January 2010

  • Yamamoto, Susumu; Kendelewicz, Tom; Newberg, John T.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 5
  • DOI: 10.1021/jp909876t

Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting
journal, January 2015

  • Chandrasekaran, Sundaram; Hur, Seung Hyun; Kim, Eui Jung
  • RSC Advances, Vol. 5, Issue 37
  • DOI: 10.1039/C5RA02934A

Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues
journal, January 1995

  • Jackson, Michael; Choo, Lin-P'ing; Watson, Peter H.
  • Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Vol. 1270, Issue 1
  • DOI: 10.1016/0925-4439(94)00056-V

Carboxyl group (–CO 2 H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications
journal, January 2004

  • Yu, Shi; Chow, Gan Moog
  • J. Mater. Chem., Vol. 14, Issue 18
  • DOI: 10.1039/B404964K

Fourier transform IR spectroscopic study of hydration-induced structure changes in the solid state of ω-gliadins
journal, November 1996

  • Wellner, Nikolaus; Belton, Peter S.; Tatham, Arthur S.
  • Biochemical Journal, Vol. 319, Issue 3
  • DOI: 10.1042/bj3190741