DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A 3D dynamic model to assess the impacts of low-mode asymmetry, aneurysms and mix-induced radiative loss on capsule performance across inertial confinement fusion platforms

Abstract

A simple 3D dynamic model for inertial confinement fusion (ICF) implosions has been developed and used to assess the impacts of low-mode asymmetry, aneurysms and mix-induced radiative loss on capsule performance across ICF platforms. While benchmarked against radiation hydrodynamics simulations, this model benefits from simplicity and speed to allow rapid assessment of possible sources of degradation as well as to help build intuition about the relative importance of different effects. Degradations in the model result from 3D pr areal density perturbations that grow under deceleration from a radial stagnation flow, resulting in reduced convergence, stagnation pressure and temperature. When available, experimental data are used as input to seed 3D perturbations in the model so that the actual observed hotspot and shell areal density asymmetry at stagnation, as well as the radiation loss increase from mix impurities, are accurately reproduced. This model is applied to a broad set of implosion data from the NIF and Omega, including examples from both indirect drive and direct drive. The model matches most experimental observables and explains major performance degradation mechanisms which can result in 30–100-fold reductions in yield. We investigate a modified ignition criterion that accounts for the increase in expansion pdV work, duemore » to the presence of 3D pr perturbations and loss-of-confinement in thin regions of the shell.« less

Authors:
 [1]; ORCiD logo [1];  [1];  [2];  [1];  [2];  [1];  [1];  [2];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [2]; ORCiD logo [3];  [1];  [3];  [2];  [2] more »;  [1];  [1];  [1];  [1]; ORCiD logo [1];  [2];  [4];  [2];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [2];  [2]; ORCiD logo [5];  [2];  [1];  [2] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Rochester, NY (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Rochester, NY (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1542744
Report Number(s):
LLNL-JRNL-755078
Journal ID: ISSN 0029-5515; 941692
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 59; Journal Issue: 3; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Springer, P. T., Hurricane, O. A., Hammer, J. H., Betti, R., Callahan, D. A., Campbell, E. M., Casey, D. T., Cerjan, C. J., Cao, D., Dewald, E., Divol, L., Doeppner, T., Edwards, M. J., Field, J. E., Forrest, C., Frenje, J., Gaffney, J. A., Gatu-Johnson, M., Glebov, V., Goncharov, V. N., Grim, G. P., Hartouni, E., Hatarik, R., Hinkel, D. E., Berzak Hopkins, L., Igumenshchev, I., Knapp, P., Knauer, J. P., Kritcher, A. L., Landen, O., Pak, A., Le Pape, S., Ma, T., MacPhee, A. G., Munro, D. H., Nora, R. C., Patel, P. K., Peterson, L., Radha, P. B., Regan, S. P., Rinderknecht, H., Sangster, C., Spears, B. K., and Stoeckl, C. A 3D dynamic model to assess the impacts of low-mode asymmetry, aneurysms and mix-induced radiative loss on capsule performance across inertial confinement fusion platforms. United States: N. p., 2018. Web. doi:10.1088/1741-4326/aaed65.
Springer, P. T., Hurricane, O. A., Hammer, J. H., Betti, R., Callahan, D. A., Campbell, E. M., Casey, D. T., Cerjan, C. J., Cao, D., Dewald, E., Divol, L., Doeppner, T., Edwards, M. J., Field, J. E., Forrest, C., Frenje, J., Gaffney, J. A., Gatu-Johnson, M., Glebov, V., Goncharov, V. N., Grim, G. P., Hartouni, E., Hatarik, R., Hinkel, D. E., Berzak Hopkins, L., Igumenshchev, I., Knapp, P., Knauer, J. P., Kritcher, A. L., Landen, O., Pak, A., Le Pape, S., Ma, T., MacPhee, A. G., Munro, D. H., Nora, R. C., Patel, P. K., Peterson, L., Radha, P. B., Regan, S. P., Rinderknecht, H., Sangster, C., Spears, B. K., & Stoeckl, C. A 3D dynamic model to assess the impacts of low-mode asymmetry, aneurysms and mix-induced radiative loss on capsule performance across inertial confinement fusion platforms. United States. https://doi.org/10.1088/1741-4326/aaed65
Springer, P. T., Hurricane, O. A., Hammer, J. H., Betti, R., Callahan, D. A., Campbell, E. M., Casey, D. T., Cerjan, C. J., Cao, D., Dewald, E., Divol, L., Doeppner, T., Edwards, M. J., Field, J. E., Forrest, C., Frenje, J., Gaffney, J. A., Gatu-Johnson, M., Glebov, V., Goncharov, V. N., Grim, G. P., Hartouni, E., Hatarik, R., Hinkel, D. E., Berzak Hopkins, L., Igumenshchev, I., Knapp, P., Knauer, J. P., Kritcher, A. L., Landen, O., Pak, A., Le Pape, S., Ma, T., MacPhee, A. G., Munro, D. H., Nora, R. C., Patel, P. K., Peterson, L., Radha, P. B., Regan, S. P., Rinderknecht, H., Sangster, C., Spears, B. K., and Stoeckl, C. Tue . "A 3D dynamic model to assess the impacts of low-mode asymmetry, aneurysms and mix-induced radiative loss on capsule performance across inertial confinement fusion platforms". United States. https://doi.org/10.1088/1741-4326/aaed65. https://www.osti.gov/servlets/purl/1542744.
@article{osti_1542744,
title = {A 3D dynamic model to assess the impacts of low-mode asymmetry, aneurysms and mix-induced radiative loss on capsule performance across inertial confinement fusion platforms},
author = {Springer, P. T. and Hurricane, O. A. and Hammer, J. H. and Betti, R. and Callahan, D. A. and Campbell, E. M. and Casey, D. T. and Cerjan, C. J. and Cao, D. and Dewald, E. and Divol, L. and Doeppner, T. and Edwards, M. J. and Field, J. E. and Forrest, C. and Frenje, J. and Gaffney, J. A. and Gatu-Johnson, M. and Glebov, V. and Goncharov, V. N. and Grim, G. P. and Hartouni, E. and Hatarik, R. and Hinkel, D. E. and Berzak Hopkins, L. and Igumenshchev, I. and Knapp, P. and Knauer, J. P. and Kritcher, A. L. and Landen, O. and Pak, A. and Le Pape, S. and Ma, T. and MacPhee, A. G. and Munro, D. H. and Nora, R. C. and Patel, P. K. and Peterson, L. and Radha, P. B. and Regan, S. P. and Rinderknecht, H. and Sangster, C. and Spears, B. K. and Stoeckl, C.},
abstractNote = {A simple 3D dynamic model for inertial confinement fusion (ICF) implosions has been developed and used to assess the impacts of low-mode asymmetry, aneurysms and mix-induced radiative loss on capsule performance across ICF platforms. While benchmarked against radiation hydrodynamics simulations, this model benefits from simplicity and speed to allow rapid assessment of possible sources of degradation as well as to help build intuition about the relative importance of different effects. Degradations in the model result from 3D pr areal density perturbations that grow under deceleration from a radial stagnation flow, resulting in reduced convergence, stagnation pressure and temperature. When available, experimental data are used as input to seed 3D perturbations in the model so that the actual observed hotspot and shell areal density asymmetry at stagnation, as well as the radiation loss increase from mix impurities, are accurately reproduced. This model is applied to a broad set of implosion data from the NIF and Omega, including examples from both indirect drive and direct drive. The model matches most experimental observables and explains major performance degradation mechanisms which can result in 30–100-fold reductions in yield. We investigate a modified ignition criterion that accounts for the increase in expansion pdV work, due to the presence of 3D pr perturbations and loss-of-confinement in thin regions of the shell.},
doi = {10.1088/1741-4326/aaed65},
journal = {Nuclear Fusion},
number = 3,
volume = 59,
place = {United States},
year = {Tue Dec 18 00:00:00 EST 2018},
month = {Tue Dec 18 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion
journal, May 2011

  • Edwards, M. J.; Lindl, J. D.; Spears, B. K.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592173

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Erratum: Corrigendum: Inertial-confinement fusion with lasers
journal, June 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 7
  • DOI: 10.1038/nphys3802

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims
journal, July 2016

  • Clark, D. S.; Weber, C. R.; Smalyuk, V. A.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4958812

Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
journal, April 2015

  • Weber, T. E.; Intrator, T. P.; Smith, R. J.
  • Physics of Plasmas, Vol. 22, Issue 4
  • DOI: 10.1063/1.4919262

Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)
journal, May 2015

  • Tommasini, R.; Field, J. E.; Hammel, B. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921218

Inertially confined fusion plasmas dominated by alpha-particle self-heating
journal, April 2016

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3720

Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Spears, Brian K.; Edwards, M. J.; Hatchett, S.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4870390

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

Thermonuclear reaction rates V
journal, November 1988


Escape of α Particles from a Laser-Pulse-Initiated Thermonuclear Reaction
journal, April 1973


Advances in NLTE modeling for integrated simulations
journal, January 2010


Stagnation Pressure of Imploding Shells and Ignition Energy Scaling of Inertial Confinement Fusion Targets
journal, April 2001


Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

The role of hot spot mix in the low-foot and high-foot implosions on the NIF
journal, May 2017

  • Ma, T.; Patel, P. K.; Izumi, N.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983625

The Spatially Distributed Neutron Activation Diagnostic FNADs at the National Ignition Facility
journal, May 2017


High-yield bang time detector for the OMEGA laser
journal, October 2006

  • Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2221686

Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Velocity correction for neutron activation diagnostics at the NIF
journal, October 2018

  • Rinderknecht, Hans G.; Bionta, R.; Grim, G.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5038734

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Higher velocity, high-foot implosions on the National Ignition Facility lasera)
journal, May 2015

  • Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921144

Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
journal, November 2016


Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2015


Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions
journal, September 2017

  • Hurricane, O. A.; Kritcher, A.; Callahan, D. A.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4994856

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Integrated diagnostic analysis of inertial confinement fusion capsule performance
journal, May 2013

  • Cerjan, Charles; Springer, Paul T.; Sepke, Scott M.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802196

Three-dimensional hydrodynamic simulations of OMEGA implosions
journal, May 2017

  • Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4979195

Impact of asymmetries on fuel performance in inertial confinement fusion
journal, November 2018


Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA
journal, May 2017

  • Stoeckl, C.; Epstein, R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977918

Ensemble simulations of inertial confinement fusion implosions
journal, May 2017

  • Nora, Ryan; Peterson, Jayson Luc; Spears, Brian Keith
  • Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 10, Issue 4
  • DOI: 10.1002/sam.11344

Zonal flow generation in inertial confinement fusion implosions
journal, March 2017

  • Peterson, J. L.; Humbird, K. D.; Field, J. E.
  • Physics of Plasmas, Vol. 24, Issue 3
  • DOI: 10.1063/1.4977912

Stagnation Pressure of Imploding Shells and Ignition Energy Scaling of Inertial Confinement Fusion Targets
text, January 2001


Works referencing / citing this record:

A theoretical model for low-mode asymmetries in ICF implosions
journal, February 2019

  • Zhang, Cunbo; Yu, Chengxin; Yang, Chen
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5082586

On alpha-particle transport in inertial fusion
journal, June 2019

  • Zylstra, A. B.; Hurricane, O. A.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5101074

Curl-free magnetic fields for stellarator optimization
journal, October 2019


Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
journal, January 2020