skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pyrogenic iron: The missing link to high iron solubility in aerosols

Abstract

Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5];  [5]; ORCiD logo [6]; ORCiD logo [6];  [7]; ORCiD logo [8];  [9]; ORCiD logo [8]; ORCiD logo [10]; ORCiD logo [10];  [11]; ORCiD logo [12];  [13];  [14] more »; ORCiD logo [15]; ORCiD logo [16];  [17] « less
  1. Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa (Japan). Yokohama Inst. for Earth Sciences
  2. Univ. of Utrecht (Netherlands). Inst. for Marine and Atmospheric Research (IMAU); National Observatory of Athens (NOA), Palea Penteli (Greece). Inst. for Environmental Research and Sustainable Development
  3. Univ. of Crete, Crete (Greece)
  4. Cornell Univ., Ithaca, NY (United States)
  5. Univ. of East Anglia, Norwich (United Kingdom)
  6. Physical Research Lab., Ahmedabad (India)
  7. Rutgers Univ., Newark, NJ (United States)
  8. Florida State Univ., Tallahassee, FL (United States)
  9. Univ. of Georgia, Savannah, GA (United States)
  10. Univ. of Tasmania, Hobart, TAS (Australia)
  11. Sorbonne Univ., Villefranche-sur-mer (France). Lab. d’Océanographie de Villefranche
  12. North Carolina State Univ., Raleigh, NC (United States)
  13. NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)
  14. Argonne National Lab. (ANL), Argonne, IL (United States)
  15. Univ. of California, Los Angeles, CA (United States)
  16. National Observatory of Athens (NOA), Palea Penteli (Greece). Inst. for Environmental Research and Sustainable Development; Ecole Polytechnique Federale Lausanne (Switzlerland); Foundation for Research and Technology Hellas (Greece)
  17. Texas A & M Univ., College Station, TX (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23). Climate and Environmental Sciences Division
OSTI Identifier:
1542581
Alternate Identifier(s):
OSTI ID: 1594100
Grant/Contract Number:  
AC02-06CH11357; SC0006791
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 5; Journal Issue: 5; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Ito, Akinori, Myriokefalitakis, Stelios, Kanakidou, Maria, Mahowald, Natalie M., Scanza, Rachel A., Hamilton, Douglas S., Baker, Alex R., Jickells, Timothy, Sarin, Manmohan, Bikkina, Srinivas, Gao, Yuan, Shelley, Rachel U., Buck, Clifton S., Landing, William M., Bowie, Andrew R., Perron, Morgane M. G., Guieu, Cécile, Meskhidze, Nicholas, Johnson, Matthew S., Feng, Yan, Kok, Jasper F., Nenes, Athanasios, and Duce, Robert A. Pyrogenic iron: The missing link to high iron solubility in aerosols. United States: N. p., 2019. Web. doi:10.1126/sciadv.aau7671.
Ito, Akinori, Myriokefalitakis, Stelios, Kanakidou, Maria, Mahowald, Natalie M., Scanza, Rachel A., Hamilton, Douglas S., Baker, Alex R., Jickells, Timothy, Sarin, Manmohan, Bikkina, Srinivas, Gao, Yuan, Shelley, Rachel U., Buck, Clifton S., Landing, William M., Bowie, Andrew R., Perron, Morgane M. G., Guieu, Cécile, Meskhidze, Nicholas, Johnson, Matthew S., Feng, Yan, Kok, Jasper F., Nenes, Athanasios, & Duce, Robert A. Pyrogenic iron: The missing link to high iron solubility in aerosols. United States. doi:10.1126/sciadv.aau7671.
Ito, Akinori, Myriokefalitakis, Stelios, Kanakidou, Maria, Mahowald, Natalie M., Scanza, Rachel A., Hamilton, Douglas S., Baker, Alex R., Jickells, Timothy, Sarin, Manmohan, Bikkina, Srinivas, Gao, Yuan, Shelley, Rachel U., Buck, Clifton S., Landing, William M., Bowie, Andrew R., Perron, Morgane M. G., Guieu, Cécile, Meskhidze, Nicholas, Johnson, Matthew S., Feng, Yan, Kok, Jasper F., Nenes, Athanasios, and Duce, Robert A. Wed . "Pyrogenic iron: The missing link to high iron solubility in aerosols". United States. doi:10.1126/sciadv.aau7671. https://www.osti.gov/servlets/purl/1542581.
@article{osti_1542581,
title = {Pyrogenic iron: The missing link to high iron solubility in aerosols},
author = {Ito, Akinori and Myriokefalitakis, Stelios and Kanakidou, Maria and Mahowald, Natalie M. and Scanza, Rachel A. and Hamilton, Douglas S. and Baker, Alex R. and Jickells, Timothy and Sarin, Manmohan and Bikkina, Srinivas and Gao, Yuan and Shelley, Rachel U. and Buck, Clifton S. and Landing, William M. and Bowie, Andrew R. and Perron, Morgane M. G. and Guieu, Cécile and Meskhidze, Nicholas and Johnson, Matthew S. and Feng, Yan and Kok, Jasper F. and Nenes, Athanasios and Duce, Robert A.},
abstractNote = {Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity.},
doi = {10.1126/sciadv.aau7671},
journal = {Science Advances},
number = 5,
volume = 5,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Atmospheric concentration of total aerosol Fe (ng m−3) versus Fe solubility (%) for simulated estimates (colored circles) and field data (black circles). (A to E) The color represents the (combustion)/(combustion + dust) ratio for labile Fe concentration in aerosols.

Save / Share:

Works referenced in this record:

Minor effect of physical size sorting on iron solubility of transported mineral dust
journal, January 2011

  • Shi, Z. B.; Woodhouse, M. T.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 16
  • DOI: 10.5194/acp-11-8459-2011

Biomass burning as a source of dissolved iron to the open ocean?: DISSOLVED IRON FROM BIOMASS BURNING
journal, October 2005

  • Guieu, Cécile; Bonnet, Sophie; Wagener, Thibaut
  • Geophysical Research Letters, Vol. 32, Issue 19
  • DOI: 10.1029/2005GL022962

Fractional solubility of aerosol iron: Synthesis of a global-scale data set
journal, July 2012

  • Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.
  • Geochimica et Cosmochimica Acta, Vol. 89
  • DOI: 10.1016/j.gca.2012.04.022

Atmospheric dry-deposition of mineral dust and anthropogenic trace metals to the Bay of Bengal
journal, October 2013


Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach
journal, January 2018

  • Shelley, Rachel U.; Landing, William M.; Ussher, Simon J.
  • Biogeosciences, Vol. 15, Issue 8
  • DOI: 10.5194/bg-15-2271-2018

Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Labile-Fe(II) and other trace metals
journal, February 1999

  • Siefert, Ronald L.; Johansen, Anne M.; Hoffmann, Michael R.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D3
  • DOI: 10.1029/1998JD100067

Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust
journal, June 2016

  • Longo, Amelia F.; Feng, Yan; Lai, Barry
  • Environmental Science & Technology, Vol. 50, Issue 13
  • DOI: 10.1021/acs.est.6b02605

Dust and pollution: A recipe for enhanced ocean fertilization?
journal, January 2005


Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides
journal, May 2018


Mineral particle size as a control on aerosol iron solubility
journal, January 2006

  • Baker, A. R.; Jickells, T. D.
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026557

Combustion iron distribution and deposition: COMBUSTION IRON
journal, February 2008

  • Luo, Chao; Mahowald, N.; Bond, T.
  • Global Biogeochemical Cycles, Vol. 22, Issue 1
  • DOI: 10.1029/2007GB002964

High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years
journal, February 2016

  • Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.
  • Nature Geoscience, Vol. 9, Issue 4
  • DOI: 10.1038/ngeo2665

Application of a chemical leach technique for estimating labile particulate aluminum, iron, and manganese in the Columbia River plume and coastal waters off Oregon and Washington
journal, January 2008

  • Berger, Carolyn J. M.; Lippiatt, Sherry M.; Lawrence, Michael G.
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2007JC004703

Atmospheric transport of trace elements and nutrients to the oceans
journal, November 2016

  • Jickells, T. D.; Baker, A. R.; Chance, R.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2081
  • DOI: 10.1098/rsta.2015.0286

Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study
journal, January 2015

  • Myriokefalitakis, S.; Daskalakis, N.; Mihalopoulos, N.
  • Biogeosciences, Vol. 12, Issue 13
  • DOI: 10.5194/bg-12-3973-2015

Anthropogenic combustion iron as a complex climate forcer
journal, April 2018


Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea
journal, December 2011


Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter
journal, January 2005


Particle size and aerosol iron solubility: A high-resolution analysis of Atlantic aerosols
journal, June 2010


Iron solubility driven by speciation in dust sources to the ocean
journal, April 2009

  • Schroth, Andrew W.; Crusius, John; Sholkovitz, Edward R.
  • Nature Geoscience, Vol. 2, Issue 5
  • DOI: 10.1038/ngeo501

Smaller desert dust cooling effect estimated from analysis of dust size and abundance
journal, March 2017

  • Kok, Jasper F.; Ridley, David A.; Zhou, Qing
  • Nature Geoscience, Vol. 10, Issue 4
  • DOI: 10.1038/ngeo2912

Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate
journal, April 2005


Influence of measurement uncertainties on fractional solubility of iron in mineral aerosols over the oceans
journal, September 2016


Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean
journal, January 2016


Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume
journal, January 2006

  • Baker, A. R.; French, M.; Linge, K. L.
  • Geophysical Research Letters, Vol. 33, Issue 7
  • DOI: 10.1029/2005GL024764

Response of acid mobilization of iron-containing mineral dust to improvement of air quality projected in the future
journal, January 2014


Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing
journal, January 2011

  • Shi, Z.; Bonneville, S.; Krom, M. D.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 3
  • DOI: 10.5194/acp-11-995-2011

Comparison of particle emissions from small heavy fuel oil and wood-fired boilers
journal, October 2009


Solubility of Iron from Combustion Source Particles in Acidic Media Linked to Iron Speciation
journal, September 2012

  • Fu, Hongbo; Lin, Jun; Shang, Guangfeng
  • Environmental Science & Technology, Vol. 46, Issue 20
  • DOI: 10.1021/es302558m

Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean: Iron Isotope in Anthropogenic Aerosols
journal, September 2016

  • Kurisu, Minako; Takahashi, Yoshio; Iizuka, Tsuyoshi
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 18
  • DOI: 10.1002/2016JD024957

Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise: AEROSOL FE AND AL SOLUBILITY
journal, April 2006

  • Buck, Clifton S.; Landing, William M.; Resing, Joseph A.
  • Geochemistry, Geophysics, Geosystems, Vol. 7, Issue 4
  • DOI: 10.1029/2005GC000977

Atmospheric Processing of Combustion Aerosols as a Source of Bioavailable Iron
journal, February 2015


Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols
journal, February 1992

  • Zhuang, Guoshun; Yi, Zhen; Duce, Robert A.
  • Nature, Vol. 355, Issue 6360
  • DOI: 10.1038/355537a0

Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations
journal, January 2009


Photoreductive Dissolution of Iron Oxides Trapped in Ice and Its Environmental Implications
journal, June 2010

  • Kim, Kitae; Choi, Wonyong; Hoffmann, Michael R.
  • Environmental Science & Technology, Vol. 44, Issue 11
  • DOI: 10.1021/es9037808

Role of dust alkalinity in acid mobilization of iron
journal, January 2010


Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea: FRACTIONAL SOLUBILITY OF AEROSOL IRON
journal, October 2007

  • Sedwick, Peter N.; Sholkovitz, Edward R.; Church, Thomas M.
  • Geochemistry, Geophysics, Geosystems, Vol. 8, Issue 10
  • DOI: 10.1029/2007GC001586

Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Anions and cations
journal, January 2004


Iron from a submarine source impacts the productive layer of the Western Tropical South Pacific (WTSP)
journal, June 2018


Pacific Ocean aerosols: Deposition and solubility of iron, aluminum, and other trace elements
journal, December 2013


Iron mobilization in mineral dust: Can anthropogenic SO 2 emissions affect ocean productivity?
journal, January 2003


Multiple sources of soluble atmospheric iron to Antarctic waters: SOLUBLE IRON SOURCES TO ANTARCTIC WATERS
journal, March 2016

  • Winton, V. H. L.; Edwards, R.; Delmonte, B.
  • Global Biogeochemical Cycles, Vol. 30, Issue 3
  • DOI: 10.1002/2015GB005265

Aerosol iron solubility over Bay of Bengal: Role of anthropogenic sources and chemical processing
journal, August 2010


Iron Biogeochemistry in the High Latitude North Atlantic Ocean
journal, January 2018

  • Achterberg, Eric P.; Steigenberger, Sebastian; Marsay, Chris M.
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-19472-1

Atmospheric processing of iron in mineral and combustion aerosols: development of an intermediate-complexity mechanism suitable for Earth system models
journal, January 2018

  • Scanza, Rachel A.; Hamilton, Douglas S.; Perez Garcia-Pando, Carlos
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 19
  • DOI: 10.5194/acp-18-14175-2018

Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study
journal, January 2018

  • Myriokefalitakis, Stelios; Ito, Akinori; Kanakidou, Maria
  • Biogeosciences, Vol. 15, Issue 21
  • DOI: 10.5194/bg-15-6659-2018

Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients
journal, May 2018

  • Kanakidou, Maria; Myriokefalitakis, Stelios; Tsigaridis, Kostas
  • Environmental Research Letters, Vol. 13, Issue 6
  • DOI: 10.1088/1748-9326/aabcdb

Estimation of iron solubility from observations and a global aerosol model
journal, January 2005

  • Luo, Chao; Mahowald, N. M.; Meskhidze, N.
  • Journal of Geophysical Research, Vol. 110, Issue D23
  • DOI: 10.1029/2005JD006059

Estimation of the Atmospheric Flux of Nutrients and Trace Metals to the Eastern Tropical North Atlantic Ocean*
journal, October 2015

  • Powell, C. F.; Baker, A. R.; Jickells, T. D.
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 10
  • DOI: 10.1175/JAS-D-15-0011.1

The integral role of iron in ocean biogeochemistry
journal, March 2017

  • Tagliabue, Alessandro; Bowie, Andrew R.; Boyd, Philip W.
  • Nature, Vol. 543, Issue 7643
  • DOI: 10.1038/nature21058

    Works referencing / citing this record:

    Spatial and temporal variability in concentration and characteristics of aerosols at Visakhapatnam (east) and Goa (west) coasts of India
    journal, December 2019

    • Yadav, K.; Sarma, V. V. S. S.; Kumar, M. Dileep
    • Environmental Science and Pollution Research, Vol. 27, Issue 1
    • DOI: 10.1007/s11356-019-06784-6

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.