skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases

Abstract

We introduce a general surface passivation mechanism for cesium lead halide perovskite materials (CsPbX3, X = Cl, Br, I) that is supported by a combined experimental and theoretical study of the nanocrystal surface chemistry. A variety of spectroscopic methods are employed together with ab initio calculations to identify surface halide vacancies as the predominant source of charge trapping. The number of surface traps per nanocrystal is quantified by 1H NMR spectroscopy, and that number is consistent with a simple trapping model in which surface halide vacancies create deleterious under-coordinated lead atoms. These halide vacancies exhibit trapping behavior that differs among CsPbCl3, CsPbBr3, and CsPbI3. Ab initio calculations suggest that introduction of anionic X-type ligands can produce trap-free band gaps by altering the energetics of lead-based defect levels. General rules for selecting effective passivating ligand pairs are introduced by considering established principles of coordination chemistry. Introducing softer, anionic, X-type Lewis bases that target under-coordinated lead atoms results in absolute quantum yields approaching unity and monoexponential luminescence decay kinetics, thereby indicating full trap passivation. This work provides a systematic framework for preparing highly luminescent CsPbX3 nanocrystals with variable compositions and dimensionalities, thereby improving the fundamental understanding of these materials and informing futuremore » synthetic and post-synthetic efforts toward trap-free CsPbX3 nanocrystals.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [3]; ORCiD logo [4]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Univ. of California, Berkeley, CA (United States). Kavli Energy NanoScience Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1542345
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 50; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Nenon, David P., Pressler, Kimo, Kang, Jun, Koscher, Brent A., Olshansky, Jacob H., Osowiecki, Wojciech T., Koc, Matthew A., Wang, Lin-Wang, and Alivisatos, A. Paul. Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. United States: N. p., 2018. Web. doi:10.1021/jacs.8b11035.
Nenon, David P., Pressler, Kimo, Kang, Jun, Koscher, Brent A., Olshansky, Jacob H., Osowiecki, Wojciech T., Koc, Matthew A., Wang, Lin-Wang, & Alivisatos, A. Paul. Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. United States. doi:https://doi.org/10.1021/jacs.8b11035
Nenon, David P., Pressler, Kimo, Kang, Jun, Koscher, Brent A., Olshansky, Jacob H., Osowiecki, Wojciech T., Koc, Matthew A., Wang, Lin-Wang, and Alivisatos, A. Paul. Sun . "Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases". United States. doi:https://doi.org/10.1021/jacs.8b11035. https://www.osti.gov/servlets/purl/1542345.
@article{osti_1542345,
title = {Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases},
author = {Nenon, David P. and Pressler, Kimo and Kang, Jun and Koscher, Brent A. and Olshansky, Jacob H. and Osowiecki, Wojciech T. and Koc, Matthew A. and Wang, Lin-Wang and Alivisatos, A. Paul},
abstractNote = {We introduce a general surface passivation mechanism for cesium lead halide perovskite materials (CsPbX3, X = Cl, Br, I) that is supported by a combined experimental and theoretical study of the nanocrystal surface chemistry. A variety of spectroscopic methods are employed together with ab initio calculations to identify surface halide vacancies as the predominant source of charge trapping. The number of surface traps per nanocrystal is quantified by 1H NMR spectroscopy, and that number is consistent with a simple trapping model in which surface halide vacancies create deleterious under-coordinated lead atoms. These halide vacancies exhibit trapping behavior that differs among CsPbCl3, CsPbBr3, and CsPbI3. Ab initio calculations suggest that introduction of anionic X-type ligands can produce trap-free band gaps by altering the energetics of lead-based defect levels. General rules for selecting effective passivating ligand pairs are introduced by considering established principles of coordination chemistry. Introducing softer, anionic, X-type Lewis bases that target under-coordinated lead atoms results in absolute quantum yields approaching unity and monoexponential luminescence decay kinetics, thereby indicating full trap passivation. This work provides a systematic framework for preparing highly luminescent CsPbX3 nanocrystals with variable compositions and dimensionalities, thereby improving the fundamental understanding of these materials and informing future synthetic and post-synthetic efforts toward trap-free CsPbX3 nanocrystals.},
doi = {10.1021/jacs.8b11035},
journal = {Journal of the American Chemical Society},
number = 50,
volume = 140,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 84 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes
journal, January 2019

  • Brown, Alasdair A. M.; Hooper, Thomas J. N.; Veldhuis, Sjoerd A.
  • Nanoscale, Vol. 11, Issue 25
  • DOI: 10.1039/c9nr02566a

Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes
journal, January 2019

  • Brown, Alasdair A. M.; Hooper, Thomas J. N.; Veldhuis, Sjoerd A.
  • Nanoscale, Vol. 11, Issue 25
  • DOI: 10.1039/c9nr02566a

Facile Room‐Temperature Anion Exchange Reactions of Inorganic Perovskite Quantum Dots Enabled by a Modular Microfluidic Platform
journal, March 2019

  • Abdel‐Latif, Kameel; Epps, Robert W.; Kerr, Corwin B.
  • Advanced Functional Materials, Vol. 29, Issue 23
  • DOI: 10.1002/adfm.201900712

CsPbBr 3 Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification
journal, June 2019


Rationalizing the Molecular Design of Hole‐Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells
journal, June 2019

  • Wang, Qiong; Mosconi, Edoardo; Wolff, Christian
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201900990

Near‐Unity Photoluminescence Quantum Efficiency for All CsPbX 3 (X=Cl, Br, and I) Perovskite Nanocrystals: A Generic Synthesis Approach
journal, March 2019

  • Dutta, Anirban; Behera, Rakesh Kumar; Pal, Poulami
  • Angewandte Chemie, Vol. 131, Issue 17
  • DOI: 10.1002/ange.201900374

Verringerung schädlicher Defekte für leistungsstarke Metallhalogenid‐Perowskit‐Solarzellen
journal, April 2020

  • Ono, Luis K.; Liu, Shengzhong (Frank); Qi, Yabing
  • Angewandte Chemie, Vol. 132, Issue 17
  • DOI: 10.1002/ange.201905521

Halogen Vacancies Enable Ligand‐Assisted Self‐Assembly of Perovskite Quantum Dots into Nanowires
journal, September 2019


Near‐Unity Photoluminescence Quantum Efficiency for All CsPbX 3 (X=Cl, Br, and I) Perovskite Nanocrystals: A Generic Synthesis Approach
journal, March 2019

  • Dutta, Anirban; Behera, Rakesh Kumar; Pal, Poulami
  • Angewandte Chemie International Edition, Vol. 58, Issue 17
  • DOI: 10.1002/anie.201900374

Reducing Detrimental Defects for High‐Performance Metal Halide Perovskite Solar Cells
journal, January 2020

  • Ono, Luis K.; Liu, Shengzhong (Frank); Qi, Yabing
  • Angewandte Chemie International Edition, Vol. 59, Issue 17
  • DOI: 10.1002/anie.201905521

Halogen Vacancies Enable Ligand‐Assisted Self‐Assembly of Perovskite Quantum Dots into Nanowires
journal, November 2019

  • Pan, Jun; Li, Xiyan; Gong, Xiwen
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201909109

Observation and implication of halide exchange beyond CsPbX 3 perovskite nanocrystals
journal, January 2019


Influence of shape on the carrier relaxation dynamics of CsPbBr 3 perovskite nanocrystals
journal, January 2019

  • Ghosh, Goutam; Jana, Bikash; Sain, Sumanta
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 35
  • DOI: 10.1039/c9cp03386f

Correlation of near-unity quantum yields with photogenerated excitons in X-type ligand passivated CsPbBr 3 perovskite quantum dots
journal, January 2019

  • Park, Sunjoong; Cho, Hyunjin; Choi, Wonseok
  • Nanoscale Advances, Vol. 1, Issue 8
  • DOI: 10.1039/c9na00292h

Ultrafast carrier dynamics of metal halide perovskite nanocrystals and perovskite-composites
journal, January 2019

  • Mondal, Navendu; De, Apurba; Das, Somnath
  • Nanoscale, Vol. 11, Issue 20
  • DOI: 10.1039/c9nr01745c

Insights into the role of the lead/surfactant ratio in the formation and passivation of cesium lead bromide perovskite nanocrystals
journal, January 2020

  • Grisorio, Roberto; Fanizza, Elisabetta; Allegretta, Ignazio
  • Nanoscale, Vol. 12, Issue 2
  • DOI: 10.1039/c9nr08079a

Luminescent perovskites: recent advances in theory and experiments
journal, January 2019

  • Song, Zhen; Zhao, Jing; Liu, Quanlin
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 11
  • DOI: 10.1039/c9qi00777f

Ultra-stable CsPbBr 3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering
journal, January 2019

  • Zu, Yanqing; Dai, Jinfei; Li, Lu
  • Journal of Materials Chemistry A, Vol. 7, Issue 45
  • DOI: 10.1039/c9ta08421e

In situ growth of α-CsPbI 3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality
journal, January 2019

  • Zhang, Qi; Nan, Hui; Zhou, Yangying
  • Journal of Materials Chemistry C, Vol. 7, Issue 22
  • DOI: 10.1039/c9tc01012b

Nucleation-controlled growth of superior long oriented CsPbBr 3 microrod single crystals for high detectivity photodetectors
journal, January 2019

  • Cheng, Xiaohua; Yuan, Ye; Jing, Lin
  • Journal of Materials Chemistry C, Vol. 7, Issue 45
  • DOI: 10.1039/c9tc05333f

Improved phase stability of γ-CsPbI 3 perovskite nanocrystals using the interface effect using iodine modified graphene oxide
journal, January 2020

  • Zhang, Qi; Zhou, Yangying; Wei, Yaxuan
  • Journal of Materials Chemistry C, Vol. 8, Issue 7
  • DOI: 10.1039/c9tc06465f

Photophysics of lead-free tin halide perovskite films and solar cells
journal, August 2019

  • Handa, Taketo; Wakamiya, Atsushi; Kanemitsu, Yoshihiko
  • APL Materials, Vol. 7, Issue 8
  • DOI: 10.1063/1.5109704

Trion dynamics in lead halide perovskite nanocrystals
journal, November 2019

  • Kanemitsu, Yoshihiko
  • The Journal of Chemical Physics, Vol. 151, Issue 17
  • DOI: 10.1063/1.5125628

Picosecond electron trapping limits the emissivity of CsPbCl 3 perovskite nanocrystals
journal, November 2019

  • Lai, Runchen; Wu, Kaifeng
  • The Journal of Chemical Physics, Vol. 151, Issue 19
  • DOI: 10.1063/1.5127887

Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping
journal, January 2020

  • Ahmed, Ghada H.; Yin, Jun; Bakr, Osman M.
  • The Journal of Chemical Physics, Vol. 152, Issue 2
  • DOI: 10.1063/1.5131807

Comparison of superstar CsPbBr 3 and classical LaPO 4 :Tb 3+ ,Ce 3+ green-emitting nanophosphors
journal, February 2019


Resurfacing halide perovskite nanocrystals
journal, May 2019


Thiocyanate-Treated Perovskite-Nanocrystal-Based Light-Emitting Diodes with Insight in Efficiency Roll-Off
journal, January 2020

  • Chen, Fang; Boopathi, Karunakara Moorthy; Imran, Muhammad
  • Materials, Vol. 13, Issue 2
  • DOI: 10.3390/ma13020367