DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices

Abstract

Precise engineering of nanoparticle superlattices (NPSLs) for energy applications requires a molecular-level understanding of the physical factors governing their morphology, periodicity, mechanics, and response to external stimuli. Such knowledge, particularly the impact of ligand dynamics on physical behavior of NPSLs, is still in its infancy. Here in this paper, we combine coarse-grained molecular dynamics simulations, and small angle X-ray scattering experiments in a diamond anvil cell to demonstrate that coverage density of capping ligands (i.e., number of ligands per unit area of a nanoparticle's surface), strongly influences the structure, elasticity, and high-pressure behavior of NPSLs using face-centered cubic PbS-NPSLs as a representative example. We demonstrate that ligand coverage density dictates (a) the extent of diffusion of ligands over NP surfaces, (b) spatial distribution of the ligands in the interstitial spaces between neighboring NPs, and (c) the fraction of ligands that interdigitate across different nanoparticles. We find that below a critical coverage density (1.8 nm-2 for 7 nm PbS NPs capped with oleic acid), NPSLs collapse to form disordered aggregates via sintering, even under ambient conditions. Above the threshold ligand coverage density, NPSLs surprisingly preserve their crystalline order even under high applied pressures (~40–55 GPa), and show a completely reversible pressuremore » behavior. This opens the possibility of reversibly manipulating lattice spacing of NPSLs, and in turn, finely tuning their collective electronic, optical, thermo-mechanical, and magnetic properties.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Univ. of Louisville, KY (United States). Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1542131
Alternate Identifier(s):
OSTI ID: 1498172
Grant/Contract Number:  
AC02-06CH11357; LDRD-2017-012-N0
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 11; Journal Issue: 22; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Patra, Tarak K., Chan, Henry, Podsiadlo, Paul, Shevchenko, Elena V., Sankaranarayanan, Subramanian K. R. S., and Narayanan, Badri. Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices. United States: N. p., 2019. Web. doi:10.1039/c8nr09699f.
Patra, Tarak K., Chan, Henry, Podsiadlo, Paul, Shevchenko, Elena V., Sankaranarayanan, Subramanian K. R. S., & Narayanan, Badri. Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices. United States. https://doi.org/10.1039/c8nr09699f
Patra, Tarak K., Chan, Henry, Podsiadlo, Paul, Shevchenko, Elena V., Sankaranarayanan, Subramanian K. R. S., and Narayanan, Badri. Fri . "Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices". United States. https://doi.org/10.1039/c8nr09699f. https://www.osti.gov/servlets/purl/1542131.
@article{osti_1542131,
title = {Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices},
author = {Patra, Tarak K. and Chan, Henry and Podsiadlo, Paul and Shevchenko, Elena V. and Sankaranarayanan, Subramanian K. R. S. and Narayanan, Badri},
abstractNote = {Precise engineering of nanoparticle superlattices (NPSLs) for energy applications requires a molecular-level understanding of the physical factors governing their morphology, periodicity, mechanics, and response to external stimuli. Such knowledge, particularly the impact of ligand dynamics on physical behavior of NPSLs, is still in its infancy. Here in this paper, we combine coarse-grained molecular dynamics simulations, and small angle X-ray scattering experiments in a diamond anvil cell to demonstrate that coverage density of capping ligands (i.e., number of ligands per unit area of a nanoparticle's surface), strongly influences the structure, elasticity, and high-pressure behavior of NPSLs using face-centered cubic PbS-NPSLs as a representative example. We demonstrate that ligand coverage density dictates (a) the extent of diffusion of ligands over NP surfaces, (b) spatial distribution of the ligands in the interstitial spaces between neighboring NPs, and (c) the fraction of ligands that interdigitate across different nanoparticles. We find that below a critical coverage density (1.8 nm-2 for 7 nm PbS NPs capped with oleic acid), NPSLs collapse to form disordered aggregates via sintering, even under ambient conditions. Above the threshold ligand coverage density, NPSLs surprisingly preserve their crystalline order even under high applied pressures (~40–55 GPa), and show a completely reversible pressure behavior. This opens the possibility of reversibly manipulating lattice spacing of NPSLs, and in turn, finely tuning their collective electronic, optical, thermo-mechanical, and magnetic properties.},
doi = {10.1039/c8nr09699f},
journal = {Nanoscale},
number = 22,
volume = 11,
place = {United States},
year = {Fri Mar 01 00:00:00 EST 2019},
month = {Fri Mar 01 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermomechanical Response of Self-Assembled Nanoparticle Membranes
journal, July 2017


Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals
journal, February 2017

  • Gu, X. Wendy; Ye, Xingchen; Koshy, David M.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 11
  • DOI: 10.1073/pnas.1618508114

n-Type Conducting CdSe Nanocrystal Solids
journal, May 2003


Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties
journal, March 2008

  • Shevchenko, Elena V.; Ringler, Moritz; Schwemer, Alexander
  • Journal of the American Chemical Society, Vol. 130, Issue 11
  • DOI: 10.1021/ja710619s

Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition
journal, September 1997


Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals
journal, April 2005

  • Courty, A.; Mermet, A.; Albouy, P. A.
  • Nature Materials, Vol. 4, Issue 5, p. 395-398
  • DOI: 10.1038/nmat1366

Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films
journal, January 2007

  • Urban, Jeffrey J.; Talapin, Dmitri V.; Shevchenko, Elena V.
  • Nature Materials, Vol. 6, Issue 2, p. 115-121
  • DOI: 10.1038/nmat1826

Magnetic superlattices and their nanoscale phase transition effects
journal, February 2006

  • Cheon, J.; Park, J. -I.; Choi, J. -s.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 9
  • DOI: 10.1073/pnas.0508877103

Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface
journal, July 2010

  • Dong, Angang; Chen, Jun; Vora, Patrick M.
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09188

Free-Standing Plasmonic-Nanorod Superlattice Sheets
journal, December 2011

  • Ng, Khee Chaw; Udagedara, Indika B.; Rukhlenko, Ivan D.
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn204498j

Spin-Dependent Tunneling in Self-Assembled Cobalt-Nanocrystal Superlattices
journal, November 2000


Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


Impact of the Metallic Crystalline Structure on the Properties of Nanocrystals and Their Mesoscopic Assemblies
journal, July 2017


Nanoparticle Superlattices: The Roles of Soft Ligands
journal, September 2017


High-Pressure Structural Stability and Elasticity of Supercrystals Self-Assembled from Nanocrystals
journal, February 2011

  • Podsiadlo, Paul; Lee, Byeongdu; Prakapenka, Vitali B.
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl103587u

Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays
journal, June 2015


Electron Transport in Two-Dimensional Arrays of Gold Nanocrystals Investigated by Scanning Electrochemical Microscopy
journal, June 2004

  • Liljeroth, Peter; Vanmaekelbergh, Daniël; Ruiz, Virginia
  • Journal of the American Chemical Society, Vol. 126, Issue 22
  • DOI: 10.1021/ja0493188

Magnetic properties of self-assembled interacting nanoparticles
journal, December 2002

  • Kechrakos, D.; Trohidou, K. N.
  • Applied Physics Letters, Vol. 81, Issue 24
  • DOI: 10.1063/1.1528290

PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Comparison of Structural Behavior of Nanocrystals in Randomly Packed Films and Long-Range Ordered Superlattices by Time-Resolved Small Angle X-ray Scattering
journal, November 2009

  • Lee, Byeongdu; Podsiadlo, Paul; Rupich, Sara
  • Journal of the American Chemical Society, Vol. 131, Issue 45
  • DOI: 10.1021/ja906632b

Compression stiffness of porous nanostructures from self-assembly of branched nanocrystals
journal, January 2013

  • Ceseracciu, Luca; Miszta, Karol; De Angelis, Francesco
  • Nanoscale, Vol. 5, Issue 2
  • DOI: 10.1039/C2NR32590J

Pressure Processing of Nanocube Assemblies Toward Harvesting of a Metastable PbS Phase
journal, July 2015


Pressure-Driven Assembly of Spherical Nanoparticles and Formation of 1D-Nanostructure Arrays
journal, July 2010

  • Wu, Huimeng; Bai, Feng; Sun, Zaicheng
  • Angewandte Chemie International Edition, Vol. 49, Issue 45, p. 8431-8434
  • DOI: 10.1002/anie.201001581

Pressure compression of CdSe nanoparticles into luminescent nanowires
journal, May 2017


Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure
journal, January 2016


Molecular Simulations of Interacting Nanocrystals
journal, September 2008

  • Schapotschnikow, Philipp; Pool, René; Vlugt, Thijs J. H.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl8017862

High Strength, Molecularly Thin Nanoparticle Membranes
journal, December 2014


Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly
journal, September 2017


Understanding interactions between capped nanocrystals: Three-body and chain packing effects
journal, September 2009

  • Schapotschnikow, Philipp; Vlugt, Thijs J. H.
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3227043

Competition of shape and interaction patchiness for self-assembling nanoplates
journal, May 2013

  • Ye, Xingchen; Chen, Jun; Engel, Michael
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1651

Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices
journal, March 2018


Correlating Superlattice Polymorphs to Internanoparticle Distance, Packing Density, and Surface Lattice in Assemblies of PbS Nanoparticles
journal, February 2013

  • Wang, Zhongwu; Schliehe, Constanze; Bian, Kaifu
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl400084k

Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes
journal, June 2015

  • Jiang, Zhang; He, Jinbo; Deshmukh, Sanket A.
  • Nature Materials, Vol. 14, Issue 9
  • DOI: 10.1038/nmat4321

Nanostructured Gold Architectures Formed through High Pressure-Driven Sintering of Spherical Nanoparticle Arrays
journal, September 2010

  • Wu, Huimeng; Bai, Feng; Sun, Zaicheng
  • Journal of the American Chemical Society, Vol. 132, Issue 37
  • DOI: 10.1021/ja105255d

Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution
journal, November 2003

  • Hines, M. A.; Scholes, G. D.
  • Advanced Materials, Vol. 15, Issue 21, p. 1844-1849
  • DOI: 10.1002/adma.200305395

Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries
journal, April 2012

  • Koo, Bonil; Xiong, Hui; Slater, Michael D.
  • Nano Letters, Vol. 12, Issue 5, p. 2429-2435
  • DOI: 10.1021/nl3004286

The MARTINI Force Field:  Coarse Grained Model for Biomolecular Simulations
journal, July 2007

  • Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge
  • The Journal of Physical Chemistry B, Vol. 111, Issue 27
  • DOI: 10.1021/jp071097f

Comparison of Atomic-Level and Coarse-Grained Models for Liquid Hydrocarbons from Molecular Dynamics Configurational Entropy Estimates
journal, April 2006

  • Baron, Riccardo; de Vries, Alex H.; Hünenberger, Philippe H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 16
  • DOI: 10.1021/jp055888y

Nanocrystals self-assembled in superlattices directed by the solvent–organic capping interaction
journal, January 2013

  • Dalmaschio, Cleocir José; da Silveira Firmiano, Edney Geraldo; Pinheiro, Antonio Narcisio
  • Nanoscale, Vol. 5, Issue 12
  • DOI: 10.1039/C3NR00883E

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


The Compressibility of Media under Extreme Pressures
journal, September 1944

  • Murnaghan, F. D.
  • Proceedings of the National Academy of Sciences, Vol. 30, Issue 9
  • DOI: 10.1073/pnas.30.9.244

Elastic constants of β -eucryptite studied by density functional theory
journal, March 2010


Ligand structure and mechanical properties of single-nanoparticle-thick membranes
journal, June 2015

  • Salerno, K. Michael; Bolintineanu, Dan S.; Lane, J. Matthew D.
  • Physical Review E, Vol. 91, Issue 6
  • DOI: 10.1103/PhysRevE.91.062403

Mechanical Properties of Face-Centered Cubic Supercrystals of Nanocrystals
journal, July 2010

  • Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl1001313

Bond-orientational order in liquids and glasses
journal, July 1983

  • Steinhardt, Paul J.; Nelson, David R.; Ronchetti, Marco
  • Physical Review B, Vol. 28, Issue 2
  • DOI: 10.1103/PhysRevB.28.784

Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter
journal, January 2013

  • Mickel, Walter; Kapfer, Sebastian C.; Schröder-Turk, Gerd E.
  • The Journal of Chemical Physics, Vol. 138, Issue 4
  • DOI: 10.1063/1.4774084

Pressure-Driven Assembly of Spherical Nanoparticles and Formation of 1D-Nanostructure Arrays
journal, July 2010


Shortcomings of the Bond Orientational Order Parameters for the Analysis of Disordered Particulate Matter
text, January 2012


Works referencing / citing this record:

Tunable electronic properties by ligand coverage control in PbS nanocrystal assemblies
journal, January 2019

  • Liu, Liming; Bisri, Satria Zulkarnaen; Ishida, Yasuhiro
  • Nanoscale, Vol. 11, Issue 43
  • DOI: 10.1039/c9nr07101f

The Martini Model in Materials Science
preprint, January 2020