skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polycrystalline Crusts in Accreting Neutron Stars

Abstract

The crust of accreting neutron stars plays a central role in many different observational phenomena. In these stars, heavy elements produced by H–He burning in the rapid proton capture (rp-) process continually freeze to form new crust. Here, we investigate the expected composition of the solid phase. We first demonstrate using molecular dynamics that two distinct types of chemical separations occur, depending on the composition of the rp-process ashes. We then calculate phase diagrams for three-component mixtures and use them to determine the allowed crust compositions. We show that, for the large range of atomic numbers produced in the rp-process (Z ~ 10–50), the solid that forms has only a small number of available compositions. We conclude that accreting neutron star crusts should be polycrystalline, with domains of distinct composition. Our findings motivate further work on the size of the compositional domains and have implications for crust physics and accreting neutron star phenomenology.

Authors:
 [1]; ORCiD logo [1];  [2];  [2]; ORCiD logo [3]
  1. McGill Univ., Montreal, QC (Canada). Dept of Physics
  2. Indiana Univ., Bloomington, IN (United States)
  3. Univ. of Toronto, ON (Canada)
Publication Date:
Research Org.:
Indiana Univ., Bloomington, IN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP)
OSTI Identifier:
1542026
Grant/Contract Number:  
FG02-87ER40365; SC0008808
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 860; Journal Issue: 2; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; accretion; accretion disks; dense matter; stars: interiors; stars: neutron; X-rays: binaries; X-rays: bursts

Citation Formats

Caplan, Matthew E., Cumming, Andrew, Berry, D. K., Horowitz, C. J., and Mckinven, R. Polycrystalline Crusts in Accreting Neutron Stars. United States: N. p., 2018. Web. doi:10.3847/1538-4357/aac2d2.
Caplan, Matthew E., Cumming, Andrew, Berry, D. K., Horowitz, C. J., & Mckinven, R. Polycrystalline Crusts in Accreting Neutron Stars. United States. doi:10.3847/1538-4357/aac2d2.
Caplan, Matthew E., Cumming, Andrew, Berry, D. K., Horowitz, C. J., and Mckinven, R. Thu . "Polycrystalline Crusts in Accreting Neutron Stars". United States. doi:10.3847/1538-4357/aac2d2. https://www.osti.gov/servlets/purl/1542026.
@article{osti_1542026,
title = {Polycrystalline Crusts in Accreting Neutron Stars},
author = {Caplan, Matthew E. and Cumming, Andrew and Berry, D. K. and Horowitz, C. J. and Mckinven, R.},
abstractNote = {The crust of accreting neutron stars plays a central role in many different observational phenomena. In these stars, heavy elements produced by H–He burning in the rapid proton capture (rp-) process continually freeze to form new crust. Here, we investigate the expected composition of the solid phase. We first demonstrate using molecular dynamics that two distinct types of chemical separations occur, depending on the composition of the rp-process ashes. We then calculate phase diagrams for three-component mixtures and use them to determine the allowed crust compositions. We show that, for the large range of atomic numbers produced in the rp-process (Z ~ 10–50), the solid that forms has only a small number of available compositions. We conclude that accreting neutron star crusts should be polycrystalline, with domains of distinct composition. Our findings motivate further work on the size of the compositional domains and have implications for crust physics and accreting neutron star phenomenology.},
doi = {10.3847/1538-4357/aac2d2},
journal = {The Astrophysical Journal (Online)},
number = 2,
volume = 860,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Gravitational Radiation and Rotation of Accreting Neutron Stars
journal, July 1998

  • Bildsten, Lars
  • The Astrophysical Journal, Vol. 501, Issue 1
  • DOI: 10.1086/311440

The Ocean and Crust of a Rapidly Accreting Neutron Star: Implications for Magnetic Field Evolution and Thermonuclear Flashes
journal, April 1998

  • Brown, Edward F.; Bildsten, Lars
  • The Astrophysical Journal, Vol. 496, Issue 2
  • DOI: 10.1086/305419

Mapping Crustal Heating with the Cooling Light Curves of Quasi-Persistent Transients
journal, May 2009


Rapid Neutrino Cooling in the Neutron Star MXB 1659-29
journal, April 2018


Monte Carlo Study of a One‐Component Plasma. I
journal, September 1966

  • Brush, S. G.; Sahlin, H. L.; Teller, E.
  • The Journal of Chemical Physics, Vol. 45, Issue 6
  • DOI: 10.1063/1.1727895

Colloquium : Astromaterial science and nuclear pasta
journal, October 2017


Lower limit on the heat capacity of the neutron star core
journal, February 2017


Validity of the linear mixing rule for strongly coupled ionic fluids
journal, October 2003


First-order anharmonic correction to the free energy of a Coulomb crystal in periodic boundary conditions
journal, October 1990


Nuclear composition and heating in accreting neutron-star crusts
journal, June 2003


Discovery of a Second Transient Low-Mass X-Ray Binary in the Globular Cluster ngc 6440
journal, April 2010


Structure of accreted neutron star crust
journal, June 2009


Phase separation in the crust of accreting neutron stars
journal, June 2007


Thermal conductivity and phase separation of the crust of accreting neutron stars
journal, February 2009


Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars
journal, April 2008


Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma
journal, December 2012


Electrical and thermal conductivities of dense matter in the crystalline lattice phase. II - Impurity scattering
journal, February 1993

  • Itoh, Naoki; Kohyama, Yasuharu
  • The Astrophysical Journal, Vol. 404
  • DOI: 10.1086/172275

Elastic properties of polycrystalline dense matter
journal, March 2015

  • Kobyakov, D.; Pethick, C. J.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 449, Issue 1
  • DOI: 10.1093/mnrasl/slv027

Magnetic Fields of Neutron Stars
journal, September 2017


A Survey of Chemical Separation in Accreting Neutron Stars
journal, May 2016


Crystallization of classical multicomponent plasmas
journal, March 2010


Compositionally Driven Convection in the Oceans of Accreting Neutron Stars
journal, March 2011


Equations of state and phase diagrams for dense multi-ionic mixture plasmas
journal, August 1993


Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities and to the solid phase
journal, December 2000


Nuclear physics in normal X-ray bursts and superblasts
journal, May 2003


The Rapid Proton Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star
journal, October 1999

  • Schatz, Hendrik; Bildsten, Lars; Cumming, Andrew
  • The Astrophysical Journal, Vol. 524, Issue 2
  • DOI: 10.1086/307837

Neutron star cooling after deep crustal heating in the X-ray transient KS 1731-260
journal, November 2007

  • Shternin, P. S.; Yakovlev, D. G.; Haensel, P.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 382, Issue 1
  • DOI: 10.1111/j.1745-3933.2007.00386.x

Bond-orientational order in liquids and glasses
journal, July 1983

  • Steinhardt, Paul J.; Nelson, David R.; Ronchetti, Marco
  • Physical Review B, Vol. 28, Issue 2
  • DOI: 10.1103/PhysRevB.28.784

Accretion and evolution of the neutron star magnetic field
journal, August 1995

  • Urpin, V.; Geppert, U.
  • Monthly Notices of the Royal Astronomical Society, Vol. 275, Issue 4
  • DOI: 10.1093/mnras/275.4.1117

Melting of icosahedral gold nanoclusters from molecular dynamics simulations
journal, June 2005

  • Wang, Yanting; Teitel, S.; Dellago, Christoph
  • The Journal of Chemical Physics, Vol. 122, Issue 21
  • DOI: 10.1063/1.1917756

Detecting gravitational wave emission from the known accreting neutron stars
journal, September 2008


Fusion reactions in multicomponent dense matter
journal, September 2006


    Works referencing / citing this record:

    Nuclear physics of the outer layers of accreting neutron stars
    journal, July 2018

    • Meisel, Zach; Deibel, Alex; Keek, Laurens
    • Journal of Physics G: Nuclear and Particle Physics, Vol. 45, Issue 9
    • DOI: 10.1088/1361-6471/aad171

    Elastic properties of binary crystals in neutron stars and white dwarfs
    journal, April 2019

    • Kozhberov, A. A.
    • Monthly Notices of the Royal Astronomical Society, Vol. 486, Issue 4
    • DOI: 10.1093/mnras/stz1151

    Breaking properties of neutron star crust
    journal, August 2018

    • Baiko, D. A.; Chugunov, A. I.
    • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 4
    • DOI: 10.1093/mnras/sty2259

    General Relativistic Surface Degrees of Freedom in Perturbed Hybrid Stars
    journal, January 2019