skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multielectron, multisubstrate molecular catalysis of electrochemical reactions: Formal kinetic analysis in the total catalysis regime

Abstract

Cyclic voltammetry responses are derived for two-electron, two-step homogeneous electrocatalytic reactions in the total catalysis regime. Here, the models developed provide a framework for extracting kinetic information from cyclic voltammograms (CVs) obtained in conditions under which the substrate or cosubstrate is consumed in a multielectron redox process, as is particularly prevalent for very active catalysts that promote energy conversion reactions. Such determination of rate constants in the total catalysis regime is a prerequisite for the rational benchmarking of molecular electrocatalysts that promote multielectron conversions of small-molecule reactants. The present analysis is illustrated with experimental systems encompassing various limiting behaviors.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]
  1. Univ. Paris Diderot, Paris Cedex (France)
  2. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1540266
Grant/Contract Number:  
SC0017619
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 114; Journal Issue: 43; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; electrochemistry; total catalysis; energy conversion; homogeneous; mechanism; cyclic voltammetry

Citation Formats

Costentin, Cyrille, Nocera, Daniel G., and Brodsky, Casey N. Multielectron, multisubstrate molecular catalysis of electrochemical reactions: Formal kinetic analysis in the total catalysis regime. United States: N. p., 2017. Web. doi:10.1073/pnas.1711129114.
Costentin, Cyrille, Nocera, Daniel G., & Brodsky, Casey N. Multielectron, multisubstrate molecular catalysis of electrochemical reactions: Formal kinetic analysis in the total catalysis regime. United States. doi:10.1073/pnas.1711129114.
Costentin, Cyrille, Nocera, Daniel G., and Brodsky, Casey N. Mon . "Multielectron, multisubstrate molecular catalysis of electrochemical reactions: Formal kinetic analysis in the total catalysis regime". United States. doi:10.1073/pnas.1711129114. https://www.osti.gov/servlets/purl/1540266.
@article{osti_1540266,
title = {Multielectron, multisubstrate molecular catalysis of electrochemical reactions: Formal kinetic analysis in the total catalysis regime},
author = {Costentin, Cyrille and Nocera, Daniel G. and Brodsky, Casey N.},
abstractNote = {Cyclic voltammetry responses are derived for two-electron, two-step homogeneous electrocatalytic reactions in the total catalysis regime. Here, the models developed provide a framework for extracting kinetic information from cyclic voltammograms (CVs) obtained in conditions under which the substrate or cosubstrate is consumed in a multielectron redox process, as is particularly prevalent for very active catalysts that promote energy conversion reactions. Such determination of rate constants in the total catalysis regime is a prerequisite for the rational benchmarking of molecular electrocatalysts that promote multielectron conversions of small-molecule reactants. The present analysis is illustrated with experimental systems encompassing various limiting behaviors.},
doi = {10.1073/pnas.1711129114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 43,
volume = 114,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/c2cs35360a

Homogeneous Catalysis of Electrochemical Hydrogen Evolution by Iron(0) Porphyrins
journal, January 1996

  • Bhugun, Iqbal; Lexa, Doris; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 118, Issue 16
  • DOI: 10.1021/ja954326x

Homogeneous Molecular Catalysis of Electrochemical Reactions: Catalyst Benchmarking and Optimization Strategies
journal, June 2017

  • Costentin, Cyrille; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 139, Issue 24
  • DOI: 10.1021/jacs.7b02879

Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions
journal, January 2013

  • Thoi, V. Sara; Sun, Yujie; Long, Jeffrey R.
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35272A

Linear Free Energy Relationships in the Hydrogen Evolution Reaction: Kinetic Analysis of a Cobaloxime Catalyst
journal, April 2016


Kinetic control by the substrate and the cosubstrate in electrochemically monitored redox enzymatic immobilized systems. Catalytic responses in cyclic voltammetry and steady state techniques
journal, March 2002

  • Limoges, Benoı̂t; Moiroux, Jacques; Savéant, Jean-Michel
  • Journal of Electroanalytical Chemistry, Vol. 521, Issue 1-2
  • DOI: 10.1016/S0022-0728(02)00658-7

Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO 2 -to-CO Electrochemical Conversion
journal, November 2015

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Accounts of Chemical Research, Vol. 48, Issue 12
  • DOI: 10.1021/acs.accounts.5b00262

Qualitative extension of the EC′ Zone Diagram to a molecular catalyst for a multi-electron, multi-substrate electrochemical reaction
journal, January 2016

  • Martin, Daniel J.; McCarthy, Brian D.; Rountree, Eric S.
  • Dalton Transactions, Vol. 45, Issue 24
  • DOI: 10.1039/C6DT00302H

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic
journal, February 2012

  • Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.
  • Angewandte Chemie International Edition, Vol. 51, Issue 13, p. 3152-3155
  • DOI: 10.1002/anie.201108461

Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential
journal, February 2016

  • Passard, Guillaume; Ullman, Andrew M.; Brodsky, Casey N.
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.5b12828

Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts
journal, June 2014


Digital simulations on unequally spaced grids.
journal, February 2003


Electron transfer coupling of diffusional pathways. Homogeneous redox catalysis of dioxygen reduction by the methylviologen cation radical in acidic dimethylsulfoxide
journal, July 1985

  • Andrieux, C. P.; Hapiot, P.; Sa Véant, J. M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 189, Issue 1
  • DOI: 10.1016/0368-1874(85)85630-6

Homogeneous redox catalysis of electrochemical reaction
journal, August 1984

  • Savéant, J. M.; Su, K. B.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 171, Issue 1-2
  • DOI: 10.1016/0022-0728(84)80125-4

Molecular Catalysis of H 2 Evolution: Diagnosing Heterolytic versus Homolytic Pathways
journal, September 2014

  • Costentin, Cyrille; Dridi, Hachem; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja505845t

Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis
journal, June 2012

  • Costentin, Cyrille; Drouet, Samuel; Robert, Marc
  • Journal of the American Chemical Society, Vol. 134, Issue 27, p. 11235-11242
  • DOI: 10.1021/ja303560c

Role of Protonation and of Axial Ligands in the Reductive Dechlorination of Alkyl Chlorides by Vitamin B 12 Complexes. Reductive Cleavage of Chloroacetonitrile by Co(I) Cobalamins and Cobinamides
journal, April 2005

  • Argüello, Juan E.; Costentin, Cyrille; Griveau, Sophie
  • Journal of the American Chemical Society, Vol. 127, Issue 14
  • DOI: 10.1021/ja042940f

Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts
journal, May 2017

  • Lee, Katherine J.; Elgrishi, Noémie; Kandemir, Banu
  • Nature Reviews Chemistry, Vol. 1, Issue 5
  • DOI: 10.1038/s41570-017-0039

Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels
journal, December 2009

  • Morris, Amanda J.; Meyer, Gerald J.; Fujita, Etsuko
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9001679

Molecular Catalysts for Water Oxidation
journal, July 2015


Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions
journal, October 2016


Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO 2 Reduction
journal, November 2016


    Works referencing / citing this record:

    A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms
    journal, January 2019

    • Sandford, Christopher; Edwards, Martin A.; Klunder, Kevin J.
    • Chemical Science, Vol. 10, Issue 26
    • DOI: 10.1039/c9sc01545k

    High-valence Cu II Cu III species in action: demonstration of aliphatic C–H bond activation at room temperature
    journal, January 2019

    • Isaac, James A.; Thibon-Pourret, Aurore; Durand, Amélie
    • Chemical Communications, Vol. 55, Issue 84
    • DOI: 10.1039/c9cc04422a

    Fast Oxygen Reduction Catalyzed by a Copper(II) Tris(2‐pyridylmethyl)amine Complex through a Stepwise Mechanism
    journal, June 2019

    • Langerman, Michiel; Hetterscheid, Dennis G. H.
    • Angewandte Chemie, Vol. 131, Issue 37
    • DOI: 10.1002/ange.201904075

    Fast Oxygen Reduction Catalyzed by a Copper(II) Tris(2-pyridylmethyl)amine Complex through a Stepwise Mechanism
    journal, July 2019

    • Langerman, Michiel; Hetterscheid, Dennis G. H.
    • Angewandte Chemie International Edition, Vol. 58, Issue 37
    • DOI: 10.1002/anie.201904075

    Fast Oxygen Reduction Catalyzed by a Copper(II) Tris(2‐pyridylmethyl)amine Complex through a Stepwise Mechanism
    journal, June 2019

    • Langerman, Michiel; Hetterscheid, Dennis G. H.
    • Angewandte Chemie, Vol. 131, Issue 37
    • DOI: 10.1002/ange.201904075

    High-valence Cu II Cu III species in action: demonstration of aliphatic C–H bond activation at room temperature
    journal, January 2019

    • Isaac, James A.; Thibon-Pourret, Aurore; Durand, Amélie
    • Chemical Communications, Vol. 55, Issue 84
    • DOI: 10.1039/c9cc04422a

    A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms
    journal, January 2019

    • Sandford, Christopher; Edwards, Martin A.; Klunder, Kevin J.
    • Chemical Science, Vol. 10, Issue 26
    • DOI: 10.1039/c9sc01545k

    Fast Oxygen Reduction Catalyzed by a Copper(II) Tris(2-pyridylmethyl)amine Complex through a Stepwise Mechanism
    journal, July 2019

    • Langerman, Michiel; Hetterscheid, Dennis G. H.
    • Angewandte Chemie International Edition, Vol. 58, Issue 37
    • DOI: 10.1002/anie.201904075

    Analysis of multi-electron, multi-step homogeneous catalysis by rotating disc electrode voltammetry: theory, application, and obstacles
    journal, January 2020

    • Lee, Katherine J.; Gruninger, Cole T.; Lodaya, Kunal M.
    • The Analyst, Vol. 145, Issue 4
    • DOI: 10.1039/c9an02192b

    Electrochemical trapping of metastable Mn 3+ ions for activation of MnO 2 oxygen evolution catalysts
    journal, May 2018

    • Morgan Chan, Zamyla; Kitchaev, Daniil A.; Nelson Weker, Johanna
    • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
    • DOI: 10.1073/pnas.1722235115