skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Defect-driven extreme magnetoresistance in an I-Mn-V semiconductor

Abstract

The search for appropriate materials for technological applications is challenging, as real materials are subject to uncontrolled doping and thermal effects. Tetragonal NaMnBi of the I-Mn-V class of antiferromagnetic semiconductors with a Néel transition ( TN), above room temperature, can exhibit an extreme magnetoresistance (MR), greater than 10 000% at 2 K and 600% at room temperature and 9 T by quenching disorder into the system. Coupled with the large MR is a re-orientation of the magnetic moment, from a collinear spin arrangement along c to a canted one along the (011) crystallographic axis. The extreme MR is observed in samples with about 15% of Bi vacancies which in turn effectively introduces charge carriers into the lattice, leading to a drastic change in the electronic transport, from semiconducting to metallic, and to the very large MR under the magnetic field. In the absence of Bi defects, the MR is severely suppressed, suggesting that the hybridization of the Mn and Bi orbitals may be key to the field induced large MR. Finally, this is the only material of its class that exhibits the extreme MR and may potentially find use in microelectronic devices.

Authors:
 [1];  [1];  [2];  [1]
  1. Univ. of Virginia, Charlottesville, VA (United States). Dept. of Physics
  2. National Inst. of Standards and Technology, Gaithersburg, MD (United States). Center for Neutron Research
Publication Date:
Research Org.:
Univ. of Virginia, Charlottesville, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1540232
Alternate Identifier(s):
OSTI ID: 1471765
Grant/Contract Number:  
[FG02-01ER45927]
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
[ Journal Volume: 113; Journal Issue: 12]; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; physics

Citation Formats

Yang, Junjie, Wegner, Aaron, Brown, Craig M., and Louca, Despina. Defect-driven extreme magnetoresistance in an I-Mn-V semiconductor. United States: N. p., 2018. Web. doi:10.1063/1.5040364.
Yang, Junjie, Wegner, Aaron, Brown, Craig M., & Louca, Despina. Defect-driven extreme magnetoresistance in an I-Mn-V semiconductor. United States. doi:10.1063/1.5040364.
Yang, Junjie, Wegner, Aaron, Brown, Craig M., and Louca, Despina. Thu . "Defect-driven extreme magnetoresistance in an I-Mn-V semiconductor". United States. doi:10.1063/1.5040364. https://www.osti.gov/servlets/purl/1540232.
@article{osti_1540232,
title = {Defect-driven extreme magnetoresistance in an I-Mn-V semiconductor},
author = {Yang, Junjie and Wegner, Aaron and Brown, Craig M. and Louca, Despina},
abstractNote = {The search for appropriate materials for technological applications is challenging, as real materials are subject to uncontrolled doping and thermal effects. Tetragonal NaMnBi of the I-Mn-V class of antiferromagnetic semiconductors with a Néel transition (TN), above room temperature, can exhibit an extreme magnetoresistance (MR), greater than 10 000% at 2 K and 600% at room temperature and 9 T by quenching disorder into the system. Coupled with the large MR is a re-orientation of the magnetic moment, from a collinear spin arrangement along c to a canted one along the (011) crystallographic axis. The extreme MR is observed in samples with about 15% of Bi vacancies which in turn effectively introduces charge carriers into the lattice, leading to a drastic change in the electronic transport, from semiconducting to metallic, and to the very large MR under the magnetic field. In the absence of Bi defects, the MR is severely suppressed, suggesting that the hybridization of the Mn and Bi orbitals may be key to the field induced large MR. Finally, this is the only material of its class that exhibits the extreme MR and may potentially find use in microelectronic devices.},
doi = {10.1063/1.5040364},
journal = {Applied Physics Letters},
number = [12],
volume = [113],
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The emergence of spin electronics in data storage
journal, November 2007

  • Chappert, Claude; Fert, Albert; Van Dau, Frédéric Nguyen
  • Nature Materials, Vol. 6, Issue 11
  • DOI: 10.1038/nmat2024

A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction
journal, March 2011

  • Park, B. G.; Wunderlich, J.; Martí, X.
  • Nature Materials, Vol. 10, Issue 5
  • DOI: 10.1038/nmat2983

Single Crystal Growth and Spin Polarization Measurements of Diluted Magnetic Semiconductor (BaK)(ZnMn)2As2
journal, November 2017


Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor
journal, May 2014


Spintronics: A Spin-Based Electronics Vision for the Future
journal, November 2001

  • Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.
  • Science, Vol. 294, Issue 5546, p. 1488-1495
  • DOI: 10.1126/science.1065389

Inelastic scattering in ferromagnetic and antiferromagnetic spin valves
journal, January 2007


Critical behavior of the resistivity in magnetic systems. II. Below T c and in the presence of a magnetic field
journal, July 1978


Valley-dependent optoelectronics from inversion symmetry breaking
journal, June 2008


A useful pyramid scheme
journal, January 2011


Room-temperature antiferromagnetic memory resistor
journal, January 2014

  • Marti, X.; Fina, I.; Frontera, C.
  • Nature Materials, Vol. 13, Issue 4
  • DOI: 10.1038/nmat3861

Neue AMnX-verbindungen mit A ↔ Rb, Cs und X ↔ P, As, Sb, Bi: Struktur und Magnetismus
journal, October 1991


Zur Charakterisierung der magnetischen Eigenschaften von NaMnP, NaMnAs, NaMnSb, NaMnBi, LiMnAs und KMnAs �ber Neutronenbeugungsexperimente
journal, August 1986

  • Bronger, W.; M�ller, P.; H�ppner, R.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 539, Issue 8
  • DOI: 10.1002/zaac.19865390816

Room-temperature antiferromagnetism in CuMnAs
journal, April 2012

  • Máca, F.; Mašek, J.; Stelmakhovych, O.
  • Journal of Magnetism and Magnetic Materials, Vol. 324, Issue 8
  • DOI: 10.1016/j.jmmm.2011.12.017

Magnetoelectronics
journal, November 1998


Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4
journal, March 2009


Theory of spin torques and giant magnetoresistance in antiferromagnetic metals
journal, June 2006


Making Nonmagnetic Semiconductors Ferromagnetic
journal, August 1998


Magnetoresistance of Antiferromagnetic Metals Due to s - d Interaction
journal, January 1973

  • Yamada, Hiroshi; Takada, Satoshi
  • Journal of the Physical Society of Japan, Vol. 34, Issue 1
  • DOI: 10.1143/JPSJ.34.51

Antiferromagnetic magnonic crystals
journal, December 2015


Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor
journal, August 2011

  • Deng, Z.; Jin, C. Q.; Liu, Q. Q.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1425

Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics
journal, June 2010


Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs
journal, August 2013

  • Wadley, P.; Novák, V.; Campion, R. P.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3322

Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds
journal, January 2011