skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Far-field constant-gradient laser accelerator of electrons in an ion channel

Abstract

In this paper, we predict that electrons in an ion channel can gain ultra-relativistic energies by simultaneously interacting with a laser pulse and, counter-intuitively, with a decelerating electric field. The crucial role of the decelerating field is to maintain high-amplitude betatron oscillations, thereby enabling constant rate energy flow to the electrons via the inverse ion channel laser mechanism. Multiple harmonics of the betatron motion can be employed. Injecting electrons into a decelerating phase of a laser wakefield accelerator is one practical implementation of the scheme.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [3]
  1. Univ. of Texas, Austin, TX (United States); Cornell Univ., Ithaca, NY (United States)
  2. Univ. of Texas, Austin, TX (United States)
  3. Cornell Univ., Ithaca, NY (United States)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1540220
Alternate Identifier(s):
OSTI ID: 1462158
Grant/Contract Number:  
SC0007889; SC0010622
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Khudik, Vladimir N., Zhang, Xi, Wang, Tianhong, and Shvets, Gennady. Far-field constant-gradient laser accelerator of electrons in an ion channel. United States: N. p., 2018. Web. doi:10.1063/1.5036967.
Khudik, Vladimir N., Zhang, Xi, Wang, Tianhong, & Shvets, Gennady. Far-field constant-gradient laser accelerator of electrons in an ion channel. United States. doi:10.1063/1.5036967.
Khudik, Vladimir N., Zhang, Xi, Wang, Tianhong, and Shvets, Gennady. Mon . "Far-field constant-gradient laser accelerator of electrons in an ion channel". United States. doi:10.1063/1.5036967. https://www.osti.gov/servlets/purl/1540220.
@article{osti_1540220,
title = {Far-field constant-gradient laser accelerator of electrons in an ion channel},
author = {Khudik, Vladimir N. and Zhang, Xi and Wang, Tianhong and Shvets, Gennady},
abstractNote = {In this paper, we predict that electrons in an ion channel can gain ultra-relativistic energies by simultaneously interacting with a laser pulse and, counter-intuitively, with a decelerating electric field. The crucial role of the decelerating field is to maintain high-amplitude betatron oscillations, thereby enabling constant rate energy flow to the electrons via the inverse ion channel laser mechanism. Multiple harmonics of the betatron motion can be employed. Injecting electrons into a decelerating phase of a laser wakefield accelerator is one practical implementation of the scheme.},
doi = {10.1063/1.5036967},
journal = {Physics of Plasmas},
number = 8,
volume = 25,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection
journal, July 2014


Laser-Driven Coherent Betatron Oscillation in a Laser-Wakefield Cavity
journal, March 2008


Interaction of Relativistic Particles and Free Electromagnetic Waves in the Presence of a Static Helical Magnet
journal, July 1972

  • Palmer, Robert B.
  • Journal of Applied Physics, Vol. 43, Issue 7
  • DOI: 10.1063/1.1661650

Autoresonance microwave accelerator
journal, August 1991

  • Shpitalnik, R.; Cohen, C.; Dothan, F.
  • Journal of Applied Physics, Vol. 70, Issue 3
  • DOI: 10.1063/1.349614

Controlled Betatron X-Ray Radiation from Tunable Optically Injected Electrons
journal, December 2011


Ion-channel laser growth rate and beam quality requirements
journal, May 2018


Monoenergetic beams of relativistic electrons from intense laser–plasma interactions
journal, September 2004

  • Mangles, S. P. D.; Murphy, C. D.; Najmudin, Z.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02939

Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime
journal, December 2014


Particle acceleration in relativistic laser channels
journal, July 1999

  • Pukhov, A.; Sheng, Z. -M.; Meyer-ter-Vehn, J.
  • Physics of Plasmas, Vol. 6, Issue 7
  • DOI: 10.1063/1.873242

Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV
journal, June 2013

  • Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2988

Experimental Observation of Femtosecond Electron Beam Microbunching by Inverse Free-Electron-Laser Acceleration
journal, May 1998


Laser wake field acceleration: the highly non-linear broken-wave regime
journal, April 2002

  • Pukhov, A.; Meyer-ter-Vehn, J.
  • Applied Physics B: Lasers and Optics, Vol. 74, Issue 4-5
  • DOI: 10.1007/s003400200795

Multi-MeV Electron Beam Generation by Direct Laser Acceleration in High-Density Plasma Channels
journal, December 1999


Synergistic Laser-Wakefield and Direct-Laser Acceleration in the Plasma-Bubble Regime
journal, May 2015


Gamma-rays from harmonically resonant betatron oscillations in a plasma wake
journal, September 2011

  • Cipiccia, Silvia; Islam, Mohammad R.; Ersfeld, Bernhard
  • Nature Physics, Vol. 7, Issue 11
  • DOI: 10.1038/nphys2090

A laser–plasma accelerator producing monoenergetic electron beams
journal, September 2004


Ion-channel laser
journal, May 1990


GeV electron beams from a centimetre-scale accelerator
journal, September 2006

  • Leemans, W. P.; Nagler, B.; Gonsalves, A. J.
  • Nature Physics, Vol. 2, Issue 10
  • DOI: 10.1038/nphys418

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding
journal, September 2004

  • Geddes, C. G. R.; Toth, Cs.; van Tilborg, J.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02900

Controlling the betatron oscillations of a wakefield-accelerated electron beam by temporally asymmetric laser pulses
journal, April 2011

  • Nam, Inhyuk; Hur, Min Sup; Uhm, Han Sup
  • Physics of Plasmas, Vol. 18, Issue 4
  • DOI: 10.1063/1.3577566

Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields
journal, November 1991


Universal scalings for laser acceleration of electrons in ion channels
journal, October 2016

  • Khudik, Vladimir; Arefiev, Alexey; Zhang, Xi
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4964901

Phenomenological theory of laser-plasma interaction in “bubble” regime
journal, November 2004

  • Kostyukov, I.; Pukhov, A.; Kiselev, S.
  • Physics of Plasmas, Vol. 11, Issue 11
  • DOI: 10.1063/1.1799371

Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab)
journal, April 1999


Observation of Energy Gain at the BNL Inverse Free-Electron-Laser Accelerator
journal, September 1996


A Cyclotron Resonance Laser Accelerator
journal, August 1983

  • Sprangle, P.; Vlahos, L.; Tang, C. M.
  • IEEE Transactions on Nuclear Science, Vol. 30, Issue 4
  • DOI: 10.1109/TNS.1983.4336606

    Works referencing / citing this record:

    Effects of laser polarization and wavelength on hybrid laser wakefield and direct acceleration
    journal, August 2018

    • Zhang, Xi; Wang, T.; Khudik, V. N.
    • Plasma Physics and Controlled Fusion, Vol. 60, Issue 10
    • DOI: 10.1088/1361-6587/aad76f