skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

Abstract

Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to the model used in our paper, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλ2las. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [1];  [4];  [5];  [5]; ORCiD logo [6];  [2]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10];  [11];  [7]; ORCiD logo [12]; ORCiD logo [7];  [13];  [7] more »; ORCiD logo [5];  [5];  [14];  [15];  [7]; ORCiD logo [15]; ORCiD logo [14]; ORCiD logo [9];  [16]; ORCiD logo [17]; ORCiD logo [7] « less
  1. Univ. Bordeaux, Talence (France). CNRS, CEA, Centre Lasers Intenses et Applications (CELIA)
  2. Univ. Bordeaux, Talence (France). CNRS, CEA, Centre Lasers Intenses et Applications (CELIA); Univ. of California at San Diego, La Jolla, CA (United States). Dept. of Mechanical and Aerospace Engineering
  3. Univ. Bordeaux, Talence (France). CNRS, CEA, Centre Lasers Intenses et Applications (CELIA); Technische Univ. Darmstadt, Darmstadt (Germany). Inst. für Kernphysik
  4. Univ. of California at San Diego, La Jolla, CA (United States). Dept. of Mechanical and Aerospace Engineering
  5. Aix Marseill Univ., Marseille (France). Centre national de la recherche scientifique (CNRS)
  6. Univ. de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria (Spain). iUNAT, Dept. de Física
  7. Osaka Univ., Osaka (Japan). Inst. of Laser Engineering
  8. Univ. de Valladolid, Valladolid (Spain). Atómica y Óptica, Dept. de Física Teórica
  9. Univ. Bordeaux, Talence (France). CNRS, CEA, Centre Lasers Intenses et Applications (CELIA); Czech Academy of Sciences, Dolní Břežany (Czech Republic). Inst. of Phyiscs, ELI-Beamlines
  10. Atomique Energie Commission (CEA), Arpajon (France) Direction des Applications Militaires Ile-de-France (DAM DIF)
  11. Univ. Politécnica de Madrid, Madrid (Spain). ETSI Aeronáutica y del Espacio
  12. National Research Nuclear Univ. MEPhl, Moscow (Russia); Lebedev Physical Inst., Moscow (Russia)
  13. LULI, UMR, CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, and UPMC, Sorbonne Universités, Palaiseau (France)
  14. Imperial College London, London (United Kingdom). Blackett Lab.
  15. Technische Univ. Darmstadt, Darmstadt (Germany). Inst. für Kernphysik
  16. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. for Radiation Physics
  17. Univ. of York, Heslington (United Kingdom). Dept. of Physics
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1540163
Grant/Contract Number:  
SC0018312
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Physics

Citation Formats

Santos, J. J., Bailly-Grandvaux, M., Ehret, M., Arefiev, A. V., Batani, D., Beg, F. N., Calisti, A., Ferri, S., Florido, R., Forestier-Colleoni, P., Fujioka, S., Gigosos, M. A., Giuffrida, L., Gremillet, L., Honrubia, J. J., Kojima, S., Korneev, Ph., Law, K. F. F., Marquès, J. -R., Morace, A., Mossé, C., Peyrusse, O., Rose, S., Roth, M., Sakata, S., Schaumann, G., Suzuki-Vidal, F., Tikhonchuk, V. T., Toncian, T., Woolsey, N., and Zhang, Z. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. United States: N. p., 2018. Web. doi:10.1063/1.5018735.
Santos, J. J., Bailly-Grandvaux, M., Ehret, M., Arefiev, A. V., Batani, D., Beg, F. N., Calisti, A., Ferri, S., Florido, R., Forestier-Colleoni, P., Fujioka, S., Gigosos, M. A., Giuffrida, L., Gremillet, L., Honrubia, J. J., Kojima, S., Korneev, Ph., Law, K. F. F., Marquès, J. -R., Morace, A., Mossé, C., Peyrusse, O., Rose, S., Roth, M., Sakata, S., Schaumann, G., Suzuki-Vidal, F., Tikhonchuk, V. T., Toncian, T., Woolsey, N., & Zhang, Z. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. United States. doi:10.1063/1.5018735.
Santos, J. J., Bailly-Grandvaux, M., Ehret, M., Arefiev, A. V., Batani, D., Beg, F. N., Calisti, A., Ferri, S., Florido, R., Forestier-Colleoni, P., Fujioka, S., Gigosos, M. A., Giuffrida, L., Gremillet, L., Honrubia, J. J., Kojima, S., Korneev, Ph., Law, K. F. F., Marquès, J. -R., Morace, A., Mossé, C., Peyrusse, O., Rose, S., Roth, M., Sakata, S., Schaumann, G., Suzuki-Vidal, F., Tikhonchuk, V. T., Toncian, T., Woolsey, N., and Zhang, Z. Fri . "Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics". United States. doi:10.1063/1.5018735. https://www.osti.gov/servlets/purl/1540163.
@article{osti_1540163,
title = {Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics},
author = {Santos, J. J. and Bailly-Grandvaux, M. and Ehret, M. and Arefiev, A. V. and Batani, D. and Beg, F. N. and Calisti, A. and Ferri, S. and Florido, R. and Forestier-Colleoni, P. and Fujioka, S. and Gigosos, M. A. and Giuffrida, L. and Gremillet, L. and Honrubia, J. J. and Kojima, S. and Korneev, Ph. and Law, K. F. F. and Marquès, J. -R. and Morace, A. and Mossé, C. and Peyrusse, O. and Rose, S. and Roth, M. and Sakata, S. and Schaumann, G. and Suzuki-Vidal, F. and Tikhonchuk, V. T. and Toncian, T. and Woolsey, N. and Zhang, Z.},
abstractNote = {Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to the model used in our paper, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλ2las. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.},
doi = {10.1063/1.5018735},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas
journal, April 2009

  • Gotchev, O. V.; Knauer, J. P.; Chang, P. Y.
  • Review of Scientific Instruments, Vol. 80, Issue 4
  • DOI: 10.1063/1.3115983

Novel aspects of direct laser acceleration of relativistic electrons
journal, May 2015

  • Arefiev, A. V.; Robinson, A. P. L.; Khudik, V. N.
  • Journal of Plasma Physics, Vol. 81, Issue 4
  • DOI: 10.1017/S0022377815000434

High magnetic field generation for laser-plasma experiments
journal, November 2006

  • Pollock, B. B.; Froula, D. H.; Davis, P. F.
  • Review of Scientific Instruments, Vol. 77, Issue 11
  • DOI: 10.1063/1.2356854

Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


Experimental astrophysics with high power lasers and Z pinches
journal, August 2006

  • Remington, Bruce A.; Drake, R. Paul; Ryutov, Dmitri D.
  • Reviews of Modern Physics, Vol. 78, Issue 3
  • DOI: 10.1103/RevModPhys.78.755

Critical Magnetic Field Strength for Suppression of the Richtmyer-Meshkov Instability in Plasmas
journal, November 2013


Laboratory unraveling of matter accretion in young stars
journal, November 2017

  • Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria
  • Science Advances, Vol. 3, Issue 11
  • DOI: 10.1126/sciadv.1700982

Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser
journal, January 2013

  • Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01170

Hartree-Fock-Roothaan calculations for many-electron atoms and ions in neutron-star magnetic fields
journal, September 2008


Ion acceleration by superintense laser-plasma interaction
journal, May 2013

  • Macchi, Andrea; Borghesi, Marco; Passoni, Matteo
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.751

Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars
journal, February 2013

  • Murdin, B. N.; Li, Juerong; Pang, M. L. Y.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2466

Filamented transport of laser-generated relativistic electrons penetrating a solid target
journal, March 2002

  • Gremillet, Laurent; Bonnaud, Guy; Amiranoff, François
  • Physics of Plasmas, Vol. 9, Issue 3
  • DOI: 10.1063/1.1432994

Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
journal, August 2015


Dispersion and Transport of Energetic Particles due to the Interaction of Intense Laser Pulses with Overdense Plasmas
journal, November 2006


Divergence of laser-driven relativistic electron beams
journal, September 2010


Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields
journal, July 2012

  • Strozzi, D. J.; Tabak, M.; Larson, D. J.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4739294

Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave
journal, February 2015


Contemporary particle-in-cell approach to laser-plasma modelling
journal, September 2015


Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?
journal, July 2008

  • Spitkovsky, Anatoly
  • The Astrophysical Journal, Vol. 682, Issue 1
  • DOI: 10.1086/590248

Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer
journal, June 2016

  • Beiersdorfer, P.; Magee, E. W.; Brown, G. V.
  • Review of Scientific Instruments, Vol. 87, Issue 6
  • DOI: 10.1063/1.4952748

Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry
journal, February 2016

  • Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.
  • Applied Physics Letters, Vol. 108, Issue 9
  • DOI: 10.1063/1.4943078

Ultrafast probing of magnetic field growth inside a laser-driven solenoid
journal, March 2017


Model for the line shapes of complex ions in hot and dense plasmas
journal, November 1990


Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas
journal, April 2016

  • Arefiev, A. V.; Khudik, V. N.; Robinson, A. P. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946024

Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas
journal, January 2013


Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
journal, October 2014


Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly
journal, August 2017


Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids
journal, October 2000


Enhanced proton acceleration in an applied longitudinal magnetic field
journal, October 2016


Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


Interchange instabilities in ideal hydromagnetic theory
journal, January 1968


Matter in strong magnetic fields
journal, August 2001


Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas
journal, August 2011


Fast Electron Transport in Ultraintense Laser Pulse Interaction with Solid Targets by Rear-Side Self-Radiation Diagnostics
journal, June 2002


Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
journal, January 2018


Generation of a strong magnetic field by an intense CO 2 laser pulse
journal, February 1986


Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013

  • Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816813

Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields
journal, April 2013

  • Albertazzi, B.; Béard, J.; Ciardi, A.
  • Review of Scientific Instruments, Vol. 84, Issue 4
  • DOI: 10.1063/1.4795551

Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes
journal, September 2014


    Works referencing / citing this record:

    Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target
    journal, August 2018

    • Wang, Weiwu; Cai, Hongbo; Teng, Jian
    • Physics of Plasmas, Vol. 25, Issue 8
    • DOI: 10.1063/1.5000991

    Improvement of proton acceleration via collisionless shock acceleration by laser-foil interaction with an external magnetic field
    journal, December 2019

    • Xie, R.; Cao, L. H.; Gong, J. X.
    • Physics of Plasmas, Vol. 26, Issue 12
    • DOI: 10.1063/1.5120426

    Ultrafast wave-particle energy transfer in the collapse of standing whistler waves
    journal, November 2019


    Thermonuclear fusion triggered by collapsing standing whistler waves in magnetized overdense plasmas
    journal, January 2020


    Laser Amplification in Strongly Magnetized Plasma
    journal, July 2019