skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

Abstract

In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar +), molecular ions (Ar 2 +), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [3]
  1. Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
  2. Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
  3. Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Mathematics
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1540130
Alternate Identifier(s):
OSTI ID: 1420639
Grant/Contract Number:  
SC0001939
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
Physics

Citation Formats

Fu, Yangyang, Parsey, Guy M., Verboncoeur, John P., and Christlieb, Andrew J. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges. United States: N. p., 2017. Web. doi:10.1063/1.5005112.
Fu, Yangyang, Parsey, Guy M., Verboncoeur, John P., & Christlieb, Andrew J. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges. United States. doi:10.1063/1.5005112.
Fu, Yangyang, Parsey, Guy M., Verboncoeur, John P., and Christlieb, Andrew J. Tue . "Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges". United States. doi:10.1063/1.5005112. https://www.osti.gov/servlets/purl/1540130.
@article{osti_1540130,
title = {Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges},
author = {Fu, Yangyang and Parsey, Guy M. and Verboncoeur, John P. and Christlieb, Andrew J.},
abstractNote = {In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.},
doi = {10.1063/1.5005112},
journal = {Physics of Plasmas},
number = 11,
volume = 24,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Validity of the similarity law for the glow discharges in non-plane-parallel gaps
journal, October 2014


Effect of distribution of electric field on low-pressure gas breakdown
journal, February 2017

  • Fu, Yangyang; Yang, Shuo; Zou, Xiaobing
  • Physics of Plasmas, Vol. 24, Issue 2
  • DOI: 10.1063/1.4976848

Global Model of He/O 2 and Ar/O 2 Atmospheric Pressure Glow Discharges
journal, August 2008

  • Park, Ganyoung; Lee, Hyunwoo; Kim, Gyoocheon
  • Plasma Processes and Polymers, Vol. 5, Issue 6
  • DOI: 10.1002/ppap.200800019

Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps
journal, August 2017

  • Fu, Yangyang; Wang, Xinxin; Zou, Xiaobing
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4997425

Microplasmas for analytical spectrometry
journal, January 2003

  • Franzke, Joachim; Kunze, Kerstin; Miclea, Manuela
  • Journal of Analytical Atomic Spectrometry, Vol. 18, Issue 7
  • DOI: 10.1039/b300193h

Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure
journal, July 2014


Numerical Model of an Argon Atmospheric Pressure RF Discharge
journal, October 2008

  • Balcon, N.; Hagelaar, G.; Boeuf, J. P.
  • IEEE Transactions on Plasma Science, Vol. 36, Issue 5
  • DOI: 10.1109/TPS.2008.2003135

Similarity law for rf breakdown
journal, March 2008


Research on Similarity Law of Glow Discharge in Argon at Low Pressure by Numerical Simulation
journal, June 2014

  • Fu, Yangyang; Luo, Haiyun; Zou, Xiaobin
  • IEEE Transactions on Plasma Science, Vol. 42, Issue 6
  • DOI: 10.1109/TPS.2014.2319106

Studies of the Properties of the Hollow Cathode Glow Discharge in Helium and Neon
journal, October 1964

  • Sturges, D. J.; Oskam, H. J.
  • Journal of Applied Physics, Vol. 35, Issue 10
  • DOI: 10.1063/1.1713124

Predicted properties of microhollow cathode discharges in xenon
journal, January 2005

  • Boeuf, J. P.; Pitchford, L. C.; Schoenbach, K. H.
  • Applied Physics Letters, Vol. 86, Issue 7
  • DOI: 10.1063/1.1862781

Effect of microwave frequency on breakdown and electron energy distribution function using a global model
journal, October 2008

  • Nam, Sang Ki; Verboncoeur, John P.
  • Applied Physics Letters, Vol. 93, Issue 15
  • DOI: 10.1063/1.3003879

Xenon excimer emission from pulsed microhollow cathode discharges
journal, August 2001

  • Moselhy, M.; Shi, W.; Stark, R. H.
  • Applied Physics Letters, Vol. 79, Issue 9
  • DOI: 10.1063/1.1397760

Similarity of gas discharge in low-pressure argon gaps between two plane-parallel electrodes
journal, July 2016


Determination of the Maximum Temperature at the Center of an Optically Thick Laser-Induced Plasma Using Self-Reversed Spectral Lines
journal, September 2004


Intersection of Paschen's curves for argon
journal, September 2016

  • Fu, Yangyang; Yang, Shuo; Zou, Xiaobing
  • Physics of Plasmas, Vol. 23, Issue 9
  • DOI: 10.1063/1.4962673

High-Pressure Microdischarges: Sources of Ultraviolet Radiation
journal, June 2012


Scaling and the design of miniaturized chemical-analysis systems
journal, July 2006

  • Janasek, Dirk; Franzke, Joachim; Manz, Andreas
  • Nature, Vol. 442, Issue 7101
  • DOI: 10.1038/nature05059

Global model for high power microwave breakdown at high pressure in air
journal, April 2009


Modeling of microwave-induced plasma in argon at atmospheric pressure
journal, May 2012


Measurements and modelling of axial emission profiles in abnormal glow discharges in argon: heavy-particle processes
journal, October 2003


Effect of electron energy distribution function on the global model for high power microwave breakdown at high pressures
journal, June 2008

  • Nam, Sang Ki; Verboncoeur, John P.
  • Applied Physics Letters, Vol. 92, Issue 23
  • DOI: 10.1063/1.2942382

Scaling laws for dielectric window breakdown in vacuum and collisional regimes
journal, December 2006

  • Lau, Y. Y.; Verboncoeur, J. P.; Kim, H. C.
  • Applied Physics Letters, Vol. 89, Issue 26
  • DOI: 10.1063/1.2425025

The Validity of the Similarity Law for the Electrical Breakdown of $\hbox{SF}_{6}$ Gas
journal, February 2007

  • Osmokrovic, Predrag; Zivic, Tamara; Loncar, Boris
  • IEEE Transactions on Plasma Science, Vol. 35, Issue 1
  • DOI: 10.1109/TPS.2006.889293

Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure
journal, February 2015

  • Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907660

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Mesyats, Gennadii A.</span> </li> <li> Physics-Uspekhi, Vol. 49, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1070/PU2006v049n10ABEH006118" class="text-muted" target="_blank" rel="noopener noreferrer">10.1070/PU2006v049n10ABEH006118<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.2748314" target="_blank" rel="noopener noreferrer" class="name">Xenon excimer emission from pulsed high-pressure capillary microdischarges<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-06-11">June 2007</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Lee, Byung-Joon; Rahaman, Hasibur; Petzenhauser, Isfried</span> </li> <li> Applied Physics Letters, Vol. 90, Issue 24</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.2748314" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.2748314<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0963-0252/19/2/025018" target="_blank" rel="noopener noreferrer" class="name">Global model of low-temperature atmospheric-pressure He + H <sub>2</sub> O plasmas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-03-18">March 2010</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Liu, D. X.; Bruggeman, P.; Iza, F.</span> </li> <li> Plasma Sources Science and Technology, Vol. 19, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0963-0252/19/2/025018" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0963-0252/19/2/025018<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00216-009-2799-4" target="_blank" rel="noopener noreferrer" class="name">The micro-discharge family (dark, corona, and glow-discharge) for analytical applications realized by dielectric barriers<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-05-12">May 2009</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Franzke, J.</span> </li> <li> Analytical and Bioanalytical Chemistry, Vol. 395, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00216-009-2799-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00216-009-2799-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/andp.18892730505" target="_blank" rel="noopener noreferrer" class="name">Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1889-01-01">January 1889</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Paschen, Friedrich</span> </li> <li> Annalen der Physik, Vol. 273, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/andp.18892730505" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/andp.18892730505<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1116/1.579494" target="_blank" rel="noopener noreferrer" class="name">Spatially averaged (global) model of time modulated high density argon plasmas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1995-09-01">September 1995</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Ashida, Sumio; Lee, C.; Lieberman, M. A.</span> </li> <li> Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 13, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1116/1.579494" class="text-muted" target="_blank" rel="noopener noreferrer">10.1116/1.579494<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0022-3727/36/6/201" target="_blank" rel="noopener noreferrer" class="name">Plasma display panels: physics, recent developments and key issues<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-02-27">February 2003</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Boeuf, J. P.</span> </li> <li> Journal of Physics D: Applied Physics, Vol. 36, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0022-3727/36/6/201" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0022-3727/36/6/201<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.4869021" target="_blank" rel="noopener noreferrer" class="name">Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB <sub>6</sub> film on the MgO protective layer<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-03-01">March 2014</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Deng, Jiang; Zeng, Baoqing; Wang, Xiaoju</span> </li> <li> AIP Advances, Vol. 4, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.4869021" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.4869021<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0963-0252/15/4/012" target="_blank" rel="noopener noreferrer" class="name">Simulation of dc atmospheric pressure argon micro glow-discharge<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-08-04">August 2006</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Farouk, Tanvir; Farouk, Bakhtier; Staack, David</span> </li> <li> Plasma Sources Science and Technology, Vol. 15, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0963-0252/15/4/012" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0963-0252/15/4/012<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00216-008-2181-y" target="_blank" rel="noopener noreferrer" class="name">Micro-plasma: a novel ionisation source for ion mobility spectrometry<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-05-25">May 2008</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Vautz, Wolfgang; Michels, Antje; Franzke, Joachim</span> </li> <li> Analytical and Bioanalytical Chemistry, Vol. 391, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00216-008-2181-y" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00216-008-2181-y<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0963-0252/12/1/302" target="_blank" rel="noopener noreferrer" class="name">Breakdown processes in metal halide lamps<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-12-05">December 2002</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Lay, Brian; Moss, Richard S.; Rauf, Shahid</span> </li> <li> Plasma Sources Science and Technology, Vol. 12, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0963-0252/12/1/302" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0963-0252/12/1/302<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1259/jrs.1915.0049" target="_blank" rel="noopener noreferrer" class="name">Electricity in Gases<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1915-07-01">July 1915</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Townsend, J. S.</span> </li> <li> Journal of the Röntgen Society, Vol. 11, Issue 44</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1259/jrs.1915.0049" class="text-muted" target="_blank" rel="noopener noreferrer">10.1259/jrs.1915.0049<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.3046953" target="_blank" rel="noopener noreferrer" class="name"><em>Ionized Gases</em><span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1965-10-01">October 1965</span></small> </h2> <ul id="references-list" class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Von Engel, A.; Marton, L.</span> </li> <li> Physics Today, Vol. 18, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.3046953" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.3046953<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div></div> <ul class="pagination"></ul> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (38)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <input class="search form-control pure-input-1" placeholder="Search" style="margin-bottom:10px;" /> <label class="d-block" style="margin-left:1em; font-weight:normal; display:block;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" /> Sort by title</label> <label class="d-block" style="margin-left:1em; font-weight:normal; display:block;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" /> Sort by date</label> <div class="text-left" style="margin-top:1.5em;margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1420639-investigation-effect-nonlinear-processes-similarity-law-high-pressure-argon-discharges" itemprop="url">Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Fu, Yangyang</span> ; <span class="author">Parsey, Guy M.</span> ; <span class="author">Verboncoeur, John P.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physics of Plasmas</span> </span> </div> <div class="abstract">In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar <sup>+</sup>), molecular ions (Ar <sub>2</sub> <sup>+</sup>), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 3<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1063/1.5005112" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1420639" data-product-type="Journal Article" data-product-subtype="PM" >10.1063/1.5005112</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/21136929-theoretical-study-plasma-parameters-dependence-gas-temperature-atmospheric-pressure-argon-microwave-discharge" itemprop="url">Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Pencheva, M.</span> ; <span class="author">Benova, E.</span> ; <span class="author">Zhelyazkov, I.</span> <span class="text-muted pubdata"> - AIP Conference Proceedings</span> </span> </div> <div class="abstract">The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1063/1.2909133" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21136929" data-product-type="Journal Article" data-product-subtype="" >10.1063/1.2909133</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/6922080-plasma-diagnostics-semiconductor-lasers-using-fluorescence-absorption-spectroscopy" itemprop="url">Plasma diagnostics with semiconductor lasers using fluorescence and absorption spectroscopy</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Miscellaneous</small><span class="authors"> <span class="author">Baer, D.S.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Plasma diagnostics based on fluorescence and absorption spectroscopy using narrow-bandwidth semiconductor lasers have been developed in a 1-kW atmospheric-pressure inductively coupled plasma torch. Measurements of species and electron number density, atom (T) and electron (T[sub e]) kinetic temperature, population temperature (T[sub pop]), and ionization temperature (Ti) were inferred from Stark-affected argon lineshapes recorded in the analytical region of the flowfield. Measurements of saturation intensity and nonradiative collisional transfer (quench) rate were inferred from characteristic variations of partially saturated lineshapes with laser intensity. The transitions investigated, 4s[sup 3]P[sub 2] [r arrow] 4p[sup 3]D[sub 3] (8115 [angstrom]), 4s[sup 3]P[sub 1] - 4p[sup<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> 3]D[sub 1] (8104[angstrom]), 4s[sup 3]P[sub 1] [r arrow] 4p[sup 3]D[sub 2] (8425 [angstrom]), 4s[sup 3]P[sub 0] [r arrow] 4p[sup 1]P[sub 1] (7948 [angstrom]), and 4s[sup 1]P[sub 1] [r arrow] 4p[sup 3]P[sub 1] (8625[angstrom]), included each of the states in the argon 4s configuration. The agreement between atom and electron kinetic temperatures, inferred from the Doppler-broadening lineshape component and the Stark width/shift ratio, suggests that all species are in translational equilibrium. Electron number density values are significantly higher than calculated Saha-equilibrium values at the kinetic temperature. Saturation intensity values were inferred from variations in the linecenter, linewidth, and integrated lineshape values of partially saturated profiles with laser intensity. Quench rates were in good agreement with calculated values of collisional transfer rate. Emission diagnostics enabled a determination of the excitation temperature (T[sub ex]), population and ionization temperatures. The results from the laser and emission diagnostics were consistent and suggested that upper-state argon populations may be described by a Boltzmann distribution at the kinetic temperature.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/22038873-global-model-self-pulsing-regime-micro-hollow-cathode-discharges" itemprop="url">A global model of the self-pulsing regime of micro-hollow cathode discharges</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Lazzaroni, C.</span> ; <span class="author">Chabert, P.</span> <span class="text-muted pubdata"> - Journal of Applied Physics</span> </span> </div> <div class="abstract">A global (volume-averaged) model of the self-pulsing regime of micro-hollow cathode discharges working in argon gas is proposed. The power balance is done using an equivalent circuit model of the discharge that allows the current and voltage dynamics to be calculated. The fraction of the total power dissipated in the discharge that contributes to electron heating is deduced from a sheath model previously described. The particle balance is first done in a very simplified reaction scheme involving only electrons, argon atomic ions, and argon molecular ions. In a second step, the excited states (the metastable state Ar*({sup 3}P{sub 2}) and<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the resonant state Ar*({sup 3}P{sub 1})) are included in the particle balance equations. The models are compared to experiments and several conclusions are drawn. The model without excited states underestimates the electron density and does not capture well the trends in pressure. The model with the excited states is in better agreement which shows that multi-step ionization plays a significant role. The time-evolution of the electron density follows closely that of the discharge current but the excited states density presents two peaks: (i) the first at the early stage of the current peak due to direct excitation with high electron temperature, (ii) the second at the end of the current (and electron density) peak due to large production of excited states by electron-ion recombination at very low electron temperature.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1063/1.3690943" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22038873" data-product-type="Journal Article" data-product-subtype="AC" >10.1063/1.3690943</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/67890-heavy-ion-beam-induced-charge-transfer-ar-cs-mixtures" itemprop="url">Heavy ion beam induced charge transfer in Ar-Cs mixtures</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Murnick, D.E.</span> ; <span class="author">Gernhauser, R.</span> ; <span class="author">Ulrich, A.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Bulletin of the American Physical Society</span> </span> </div> <div class="abstract">In situ production of target ions in cold, dense matter by heavy ion collisions and subsequent selective charge transfer may provide an effective pumping scheme for heavy ion beam pumped lasers. Charge transfer from cesium atoms to doubly charged argon ions was used for selective population of 4d-levels in Ar II. The argon ions were produced in an argon-cesium gas target by a pulsed beam of 100 MeV {sup 32}S{sup 8+} ions from the Munich Tandem van de Graaff accelerator. The ion beam of 12 {times} 10{sup 6} ions/pulse had a pulse width of 2 ns and a repetition rate<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> of 32 kHz. The argon pressure was typically 250 mbar. The cesium partial pressure was adjusted by heating the gas target, including a cesium reservoir, to temperatures between 250 and 500{degrees}C. Time resolved wavelength spectra showed large intensity increases corresponding to 4d {sup 4}D and 4d {sup 4}F to 4p transitions in Ar II in the ultraviolet wavelength region between 300 and 400 nm. This is interpreted as a resonant charge transfer of outer electrons of cesium to 4d levels in Ar II in Cs{sup 0} + Ar{sup 2+} collisions.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="hidden-xs">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.191122.1355.css" rel="stylesheet"> <script src="/pages/js/pages.191122.1355.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.191122.1355.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript><script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript></body> <!-- DOE PAGES v.191122.1355 --> </html>