skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mercury in Active-Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial Distribution

Abstract

Tundra soils serve as major sources of mercury (Hg) input to the Arctic Ocean via river runoff and coastal erosion; yet little information is available on tundra soil Hg concentrations, pool sizes, origins, and dynamics. We present a detailed investigation of Hg in the active layer (upper ~100 cm subject to seasonal thaw) of tundra soils across 11 sites in Alaska. Soil Hg concentrations in organic horizons (151 ± 7 μg/kg) were in the upper range of temperate soil organic horizons, and concentrations in mineral horizons (98 ± 6 μg/kg) were much higher than in temperate soils. Soil Hg concentrations declined from inland to coastal sites, in contrast to a hypothesized northward increase expected because of proximity to coastal atmospheric mercury depletion events. Principle component analyses and elemental ratios results show that exogenic sources dominated over geogenic sources—in A-horizons (66 ± 4%) and mineral B-horizons (51 ± 1%). 14C age-dating suggested recent origins of Hg in surface soils but showed that mineral soils (more than 7,300 years old) must have accumulated atmospheric inputs across millennia leading to high soil concentrations and pools. We estimated a total Northern Hemisphere active-layer tundra soil Hg pool of 184 Gg (range of 136 tomore » 274 Gg), suggesting a globally important Hg storage pool. Tundra soils are subject to seasonal thaw and freeze dynamics, thereby providing large inputs to rivers, lakes, and the Arctic Ocean. Understanding processes that mobilize Hg from tundra soils will be critical to understanding future Arctic wildlife and human Hg exposures.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [1];  [4]
  1. Desert Research Inst. (DRI), Reno, NV (United States)
  2. Centre National de la Recherche Scientifique (CNRS), Toulouse (France)
  3. Technische Univ. Braunschweig (Germany)
  4. Desert Research Inst. (DRI), Reno, NV (United States); Univ. of Massachusetts, Lowell, MA (United States)
Publication Date:
Research Org.:
Univ. of Nevada, Reno, NV (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1539722
Alternate Identifier(s):
OSTI ID: 1461015
Grant/Contract Number:  
SC0014275; 1304305; 1739567
Resource Type:
Accepted Manuscript
Journal Name:
Global Biogeochemical Cycles
Additional Journal Information:
Journal Volume: 32; Journal Issue: 7; Journal ID: ISSN 0886-6236
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences

Citation Formats

Olson, C., Jiskra, M., Biester, H., Chow, J., and Obrist, D. Mercury in Active-Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial Distribution. United States: N. p., 2018. Web. doi:10.1029/2017gb005840.
Olson, C., Jiskra, M., Biester, H., Chow, J., & Obrist, D. Mercury in Active-Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial Distribution. United States. doi:https://doi.org/10.1029/2017gb005840
Olson, C., Jiskra, M., Biester, H., Chow, J., and Obrist, D. Tue . "Mercury in Active-Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial Distribution". United States. doi:https://doi.org/10.1029/2017gb005840. https://www.osti.gov/servlets/purl/1539722.
@article{osti_1539722,
title = {Mercury in Active-Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial Distribution},
author = {Olson, C. and Jiskra, M. and Biester, H. and Chow, J. and Obrist, D.},
abstractNote = {Tundra soils serve as major sources of mercury (Hg) input to the Arctic Ocean via river runoff and coastal erosion; yet little information is available on tundra soil Hg concentrations, pool sizes, origins, and dynamics. We present a detailed investigation of Hg in the active layer (upper ~100 cm subject to seasonal thaw) of tundra soils across 11 sites in Alaska. Soil Hg concentrations in organic horizons (151 ± 7 μg/kg) were in the upper range of temperate soil organic horizons, and concentrations in mineral horizons (98 ± 6 μg/kg) were much higher than in temperate soils. Soil Hg concentrations declined from inland to coastal sites, in contrast to a hypothesized northward increase expected because of proximity to coastal atmospheric mercury depletion events. Principle component analyses and elemental ratios results show that exogenic sources dominated over geogenic sources—in A-horizons (66 ± 4%) and mineral B-horizons (51 ± 1%). 14C age-dating suggested recent origins of Hg in surface soils but showed that mineral soils (more than 7,300 years old) must have accumulated atmospheric inputs across millennia leading to high soil concentrations and pools. We estimated a total Northern Hemisphere active-layer tundra soil Hg pool of 184 Gg (range of 136 to 274 Gg), suggesting a globally important Hg storage pool. Tundra soils are subject to seasonal thaw and freeze dynamics, thereby providing large inputs to rivers, lakes, and the Arctic Ocean. Understanding processes that mobilize Hg from tundra soils will be critical to understanding future Arctic wildlife and human Hg exposures.},
doi = {10.1029/2017gb005840},
journal = {Global Biogeochemical Cycles},
number = 7,
volume = 32,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mercury Distribution Across 14 U.S. Forests. Part I: Spatial Patterns of Concentrations in Biomass, Litter, and Soils
journal, May 2011

  • Obrist, D.; Johnson, D. W.; Lindberg, S. E.
  • Environmental Science & Technology, Vol. 45, Issue 9
  • DOI: 10.1021/es104384m

Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle: MERCURY ISOTOPES IN A FORESTED ECOSYSTEM
journal, March 2013

  • Demers, Jason D.; Blum, Joel D.; Zak, Donald R.
  • Global Biogeochemical Cycles, Vol. 27, Issue 1
  • DOI: 10.1002/gbc.20021

The Influence of Sample Drying Procedures on Mercury Concentrations Analyzed in Soils
journal, March 2015

  • Hojdová, Maria; Rohovec, Jan; Chrastný, Vladislav
  • Bulletin of Environmental Contamination and Toxicology, Vol. 94, Issue 5
  • DOI: 10.1007/s00128-015-1521-9

A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition
journal, February 2007


The recent warming of permafrost in Alaska
journal, December 2005


The role of humic substances in the mobilization of mercury from watersheds
journal, April 1991

  • Mierle, G.; Ingram, R.
  • Water Air & Soil Pollution, Vol. 56, Issue 1
  • DOI: 10.1007/BF00342282

Characteristics of cryogenic soils along a latitudinal transect in arctic Alaska
journal, November 1998

  • Ping, C. L.; Bockheim, J. G.; Kimble, J. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D22
  • DOI: 10.1029/98JD02024

Wildfires threaten mercury stocks in northern soils
journal, January 2006

  • Turetsky, Merritt R.; Harden, Jennifer W.; Friedli, Hans R.
  • Geophysical Research Letters, Vol. 33, Issue 16
  • DOI: 10.1029/2005GL025595

The ade4 Package: Implementing the Duality Diagram for Ecologists
journal, January 2007

  • Dray, Stéphane; Dufour, Anne-Béatrice
  • Journal of Statistical Software, Vol. 22, Issue 4
  • DOI: 10.18637/jss.v022.i04

Mercury Sequestration in Forests and Peatlands
journal, January 2003


High risk of permafrost thaw
journal, November 2011

  • Schuur, Edward A. G.; Abbott, Benjamin
  • Nature, Vol. 480, Issue 7375
  • DOI: 10.1038/480032a

Clay Mineralogy in Arctic Tundra Gelisols, Northern Alaska
journal, January 2010

  • Borden, Patrick W.; Ping, Chien-Lu; McCarthy, Paul J.
  • Soil Science Society of America Journal, Vol. 74, Issue 2
  • DOI: 10.2136/sssaj2009.0187

Atmospheric Mercury Deposition during the Last 270 Years:  A Glacial Ice Core Record of Natural and Anthropogenic Sources
journal, June 2002

  • Schuster, Paul F.; Krabbenhoft, David P.; Naftz, David L.
  • Environmental Science & Technology, Vol. 36, Issue 11
  • DOI: 10.1021/es0157503

Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial
journal, July 2014

  • Amos, Helen M.; Jacob, Daniel J.; Kocman, David
  • Environmental Science & Technology, Vol. 48, Issue 16
  • DOI: 10.1021/es502134t

Biogeochemical Cycling of Methylmercury in Lakes and Tundra Watersheds of Arctic Alaska
journal, February 2006

  • Hammerschmidt, Chad R.; Fitzgerald, William F.; Lamborg, Carl H.
  • Environmental Science & Technology, Vol. 40, Issue 4
  • DOI: 10.1021/es051322b

Permafrost degradation stimulates carbon loss from experimentally warmed tundra
journal, March 2014

  • Natali, Susan M.; Schuur, Edward A. G.; Webb, Elizabeth E.
  • Ecology, Vol. 95, Issue 3
  • DOI: 10.1890/13-0602.1

Contamination of Alpine snow and ice at Colle Gnifetti, Swiss/Italian Alps, from nuclear weapons tests
journal, January 2011


Exposure of the Inuit Population of Nunavik (Arctic Québec) to Lead and Mercury
journal, July 2001

  • Dewailly, Éric; Ayotte, Pierre; Bruneau, Suzanne
  • Archives of Environmental Health: An International Journal, Vol. 56, Issue 4
  • DOI: 10.1080/00039890109604467

Arctic Ocean: Is It a Sink or a Source of Atmospheric Mercury?
journal, December 2013

  • Dastoor, Ashu P.; Durnford, Dorothy A.
  • Environmental Science & Technology, Vol. 48, Issue 3
  • DOI: 10.1021/es404473e

Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
journal, July 2017

  • Obrist, Daniel; Agnan, Yannick; Jiskra, Martin
  • Nature, Vol. 547, Issue 7662
  • DOI: 10.1038/nature22997

Trends in Mercury in Hair of Greenlandic Polar Bears ( Ursus maritimus ) during 1892−2001
journal, February 2006

  • Dietz, R.; Riget, F.; Born, E. W.
  • Environmental Science & Technology, Vol. 40, Issue 4
  • DOI: 10.1021/es051636z

Squeezing the Arctic carbon balloon
journal, November 2012


Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice
journal, January 2014

  • Moore, Christopher W.; Obrist, Daniel; Steffen, Alexandra
  • Nature, Vol. 506, Issue 7486
  • DOI: 10.1038/nature12924

A mass budget for mercury and methylmercury in the Arctic Ocean: ARCTIC OCEAN HG AND MEHG MASS BUDGET
journal, April 2016

  • Soerensen, Anne L.; Jacob, Daniel J.; Schartup, Amina T.
  • Global Biogeochemical Cycles, Vol. 30, Issue 4
  • DOI: 10.1002/2015GB005280

Dust-mediated loading of trace and major elements to Wasatch Mountain snowpack
journal, August 2012


A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow
journal, January 2008

  • Steffen, A.; Douglas, T.; Amyot, M.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 6
  • DOI: 10.5194/acp-8-1445-2008

Mercury in the Swedish environment ? Recent research on causes, consequences and corrective methods
journal, January 1991

  • Lindqvist, Oliver; Johansson, Kjell; Bringmark, Lage
  • Water, Air, & Soil Pollution, Vol. 55, Issue 1-2
  • DOI: 10.1007/BF00542429

Measuring mercury in wood: challenging but important
journal, April 2017

  • Yang, Yang; Yanai, Ruth D.; Montesdeoca, Mario
  • International Journal of Environmental Analytical Chemistry, Vol. 97, Issue 5
  • DOI: 10.1080/03067319.2017.1324852

Mercury isotope compositions across North American forests: Mercury Isotopes Across U.S. Forests
journal, October 2016

  • Zheng, Wang; Obrist, Daniel; Weis, Dominique
  • Global Biogeochemical Cycles, Vol. 30, Issue 10
  • DOI: 10.1002/2015GB005323

Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans: RIVER MERCURY IN THE OCEAN
journal, June 2015

  • Zhang, Yanxu; Jacob, Daniel J.; Dutkiewicz, Stephanie
  • Global Biogeochemical Cycles, Vol. 29, Issue 6
  • DOI: 10.1002/2015GB005124

Spatiotemporal patterns of mercury accumulation in lake sediments of western North America
journal, October 2016


Permafrost Stores a Globally Significant Amount of Mercury
journal, February 2018

  • Schuster, Paul F.; Schaefer, Kevin M.; Aiken, George R.
  • Geophysical Research Letters, Vol. 45, Issue 3
  • DOI: 10.1002/2017GL075571

High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic
journal, June 2015

  • MacMillan, Gwyneth A.; Girard, Catherine; Chételat, John
  • Environmental Science & Technology, Vol. 49, Issue 13
  • DOI: 10.1021/acs.est.5b00763

Response of boreal ecosystems to varying modes of permafrost degradation
journal, September 2005

  • Jorgenson, M. T.; Osterkamp, T. E.
  • Canadian Journal of Forest Research, Vol. 35, Issue 9
  • DOI: 10.1139/x05-153

Production: Biomass Relationships and Element Cycling in Contrasting Arctic Vegetation Types
journal, February 1991

  • Shaver, Gaius R.; Chapin, F. Stuart
  • Ecological Monographs, Vol. 61, Issue 1
  • DOI: 10.2307/1942997

Daily MODIS products for analyzing early season vegetation dynamics across the North Slope of Alaska
journal, June 2010


Mercury Export from the Yukon River Basin and Potential Response to a Changing Climate
journal, November 2011

  • Schuster, Paul F.; Striegl, Robert G.; Aiken, George R.
  • Environmental Science & Technology, Vol. 45, Issue 21
  • DOI: 10.1021/es202068b

The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review
journal, January 2012

  • Douglas, Thomas A.; Loseto, Lisa L.; Macdonald, Robie W.
  • Environmental Chemistry, Vol. 9, Issue 4
  • DOI: 10.1071/EN11140

Holocene Atmospheric Mercury Levels Reconstructed from Peat Bog Mercury Stable Isotopes
journal, May 2017

  • Enrico, Maxime; Le Roux, Gaël; Heimbürger, Lars-Eric
  • Environmental Science & Technology, Vol. 51, Issue 11
  • DOI: 10.1021/acs.est.6b05804

Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
journal, December 2010

  • Turetsky, Merritt R.; Kane, Evan S.; Harden, Jennifer W.
  • Nature Geoscience, Vol. 4, Issue 1
  • DOI: 10.1038/ngeo1027

Soil mercury and its response to atmospheric mercury deposition across the northeastern United States
journal, June 2014

  • Yu, Xue; Driscoll, Charles T.; Warby, Richard A. F.
  • Ecological Applications, Vol. 24, Issue 4
  • DOI: 10.1890/13-0212.1

Modeling the Past Atmospheric Deposition of Mercury Using Natural Archives
journal, July 2007

  • Biester, Harald; Bindler, Richard; Martinez-Cortizas, Antonio
  • Environmental Science & Technology, Vol. 41, Issue 14
  • DOI: 10.1021/es0704232

Observational and Modeling Constraints on Global Anthropogenic Enrichment of Mercury
journal, March 2015

  • Amos, Helen M.; Sonke, Jeroen E.; Obrist, Daniel
  • Environmental Science & Technology, Vol. 49, Issue 7
  • DOI: 10.1021/es5058665

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century
journal, October 2015


Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s
journal, September 2009

  • Fain, X.; Ferrari, C. P.; Dommergue, A.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 38
  • DOI: 10.1073/pnas.0905117106

Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada
journal, January 2008

  • Lantz, Trevor C.; Kokelj, Steven V.
  • Geophysical Research Letters, Vol. 35, Issue 6
  • DOI: 10.1029/2007GL032433

Soil carbon accumulation in the dry tundra: Important role played by precipitation
journal, January 2009

  • Klaminder, Jonatan; Yoo, Kyungsoo; Giesler, Reiner
  • Journal of Geophysical Research, Vol. 114, Issue G4
  • DOI: 10.1029/2009JG000947

Rapid Nutrient Release from Permafrost Thaw in Arctic Aquatic Ecosystems
journal, February 2015

  • Reyes, Francisco R.; Lougheed, Vanessa L.
  • Arctic, Antarctic, and Alpine Research, Vol. 47, Issue 1
  • DOI: 10.1657/AAAR0013-099

Modern and Historic Atmospheric Mercury Fluxes in Northern Alaska:  Global Sources and Arctic Depletion
journal, January 2005

  • Fitzgerald, William F.; Engstrom, Daniel R.; Lamborg, Carl H.
  • Environmental Science & Technology, Vol. 39, Issue 2
  • DOI: 10.1021/es049128x

Apportioning global and non-global components of mercury deposition through 210Pb indexing
journal, March 2013


Forest harvest contribution to Boreal freshwater methyl mercury load: METHYL MERCURY LOAD FROM FOREST HARVEST
journal, June 2016

  • Kronberg, Rose-Marie; Drott, Andreas; Jiskra, Martin
  • Global Biogeochemical Cycles, Vol. 30, Issue 6
  • DOI: 10.1002/2015GB005316

Arctic and boreal ecosystems of western North America as components of the climate system
journal, December 2000


Methyl Mercury Formation in Hillslope Soils of Boreal Forests: The Role of Forest Harvest and Anaerobic Microbes
journal, August 2016

  • Kronberg, Rose-Marie; Jiskra, Martin; Wiederhold, Jan G.
  • Environmental Science & Technology, Vol. 50, Issue 17
  • DOI: 10.1021/acs.est.6b00762

Weathering versus atmospheric contributions to mercury concentrations in French Guiana soils
journal, November 2006


A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions
journal, December 1994


Increasing Rates of Atmospheric Mercury Deposition in Midcontinental North America
journal, August 1992


Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages
journal, June 2000

  • Vörösmarty, C. J.; Fekete, B. M.; Meybeck, M.
  • Global Biogeochemical Cycles, Vol. 14, Issue 2
  • DOI: 10.1029/1999GB900092

Wetland influence on mercury fate and transport in a temperate forested watershed
journal, July 2008

  • Selvendiran, Pranesh; Driscoll, Charles T.; Bushey, Joseph T.
  • Environmental Pollution, Vol. 154, Issue 1
  • DOI: 10.1016/j.envpol.2007.12.005

Riverine source of Arctic Ocean mercury inferred from atmospheric observations
journal, May 2012

  • Fisher, Jenny A.; Jacob, Daniel J.; Soerensen, Anne L.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1478

Mercury distribution in a toposequence of sub-Antarctic forest soils of Tierra del Fuego (Argentina) as consequence of the prevailing soil processes
journal, November 2014


Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model
journal, January 2010

  • Smith-Downey, Nicole V.; Sunderland, Elsie M.; Jacob, Daniel J.
  • Journal of Geophysical Research, Vol. 115, Issue G3
  • DOI: 10.1029/2009JG001124

Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes
journal, September 2010


Thawing permafrost and thicker active layers in sub-arctic Sweden
journal, July 2008

  • Åkerman, H. Jonas; Johansson, Margareta
  • Permafrost and Periglacial Processes, Vol. 19, Issue 3
  • DOI: 10.1002/ppp.626

Historical Trends of Mercury Deposition in Adirondack Lakes
journal, March 1999

  • Lorey, Peter; Driscoll, Charles T.
  • Environmental Science & Technology, Vol. 33, Issue 5
  • DOI: 10.1021/es9800277

Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools
journal, January 2013


A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity
journal, October 2016


Atmospheric Mercury Accumulation Rates Between 5900 and 800 Calibrated Years BP in the High Arctic of Canada Recorded by Peat Hummocks
journal, October 2004

  • Givelet, Nicolas; Roos-Barraclough, Fiona; Goodsite, Michael E.
  • Environmental Science & Technology, Vol. 38, Issue 19
  • DOI: 10.1021/es035293l

The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River
journal, February 2007


The Arctic: a sink for mercury
journal, January 2004

  • Ariya, Parisa A.; Dastroor, Ashu P.; Amyot, Marc
  • Tellus B: Chemical and Physical Meteorology, Vol. 56, Issue 5
  • DOI: 10.3402/tellusb.v56i5.16458

Mercury content in volcanic soils across Europe and its relationship with soil properties
journal, January 2012

  • Peña-Rodríguez, Susana; Pontevedra-Pombal, Xabier; Fernández-Calviño, David
  • Journal of Soils and Sediments, Vol. 12, Issue 4
  • DOI: 10.1007/s11368-011-0468-7

Atmospheric mercury—An overview
journal, March 1998


Using Mercury Isotopes To Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau
journal, December 2016

  • Wang, Xun; Luo, Ji; Yin, Runsheng
  • Environmental Science & Technology, Vol. 51, Issue 2
  • DOI: 10.1021/acs.est.6b03806

A mass balance inventory of mercury in the Arctic Ocean
journal, January 2008

  • Outridge, P. M.; Macdonald, R. W.; Wang, F.
  • Environmental Chemistry, Vol. 5, Issue 2
  • DOI: 10.1071/EN08002

The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review
journal, November 2003


Mercury Deposition and Re-emission Pathways in Boreal Forest Soils Investigated with Hg Isotope Signatures
journal, May 2015

  • Jiskra, Martin; Wiederhold, Jan G.; Skyllberg, Ulf
  • Environmental Science & Technology, Vol. 49, Issue 12
  • DOI: 10.1021/acs.est.5b00742

Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition
journal, September 2007

  • Harris, R. C.; Rudd, J. W. M.; Amyot, M.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 42
  • DOI: 10.1073/pnas.0704186104

Soil water storage and active-layer development in a sub-alpine tundra hillslope, southern Yukon Territory, Canada
journal, January 2005

  • Quinton, W. L.; Shirazi, T.; Carey, S. K.
  • Permafrost and Periglacial Processes, Vol. 16, Issue 4
  • DOI: 10.1002/ppp.543

An explorative study of mercury export from a thawing palsa mire: MERCURY EXPORT FROM A THAWING PALSA MIRE
journal, December 2008

  • Klaminder, Jonatan; Yoo, Kyungsoo; Rydberg, Johan
  • Journal of Geophysical Research: Biogeosciences, Vol. 113, Issue G4
  • DOI: 10.1029/2008JG000776

Some Characteristics of the Climate in Northern Alaska, U.S.A.
journal, November 1996

  • Zhang, T.; Osterkamp, T. E.; Stamnes, K.
  • Arctic and Alpine Research, Vol. 28, Issue 4
  • DOI: 10.2307/1551862

Mercury Export to the Arctic Ocean from the Mackenzie River, Canada
journal, June 2013

  • Emmerton, Craig A.; Graydon, Jennifer A.; Gareis, Jolie A. L.
  • Environmental Science & Technology, Vol. 47, Issue 14
  • DOI: 10.1021/es400715r

Mercury hair concentrations and dietary exposure among Inuit preschool children in Nunavut, Canada
journal, January 2011


    Works referencing / citing this record:

    Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean
    journal, November 2018

    • Sonke, Jeroen E.; Teisserenc, Roman; Heimbürger-Boavida, Lars-Eric
    • Proceedings of the National Academy of Sciences, Vol. 115, Issue 50
    • DOI: 10.1073/pnas.1811957115

    Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra
    journal, January 2019


    Atmosphere-terrestrial exchange of gaseous elemental mercury: parameterization improvement through direct comparison with measured ecosystem fluxes
    journal, January 2019

    • Khan, T. R.; Obrist, D.; Agnan, Y.
    • Environmental Science: Processes & Impacts, Vol. 21, Issue 10
    • DOI: 10.1039/c9em00341j