DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest

Abstract

We describe the salient features of a field study whose goals are to quantify the vertical distribution of plant-emitted hydrocarbons and their contribution to aerosol and cloud condensation nuclei production above a central Amazonian rain forest. Using observing systems deployed on a 50-m meteorological tower, complemented with tethered balloon deployments, the vertical distribution of hydrocarbons and aerosols was determined under different boundary layer thermodynamic states. The rain forest emits sufficient reactive hydrocarbons, such as isoprene and monoterpenes, to provide precursors of secondary organic aerosols and cloud condensation nuclei. Mesoscale convective systems transport ozone from the middle troposphere, enriching the atmospheric boundary layer as well as the forest canopy and surface layer. Through multiple chemical transformations, the ozone-enriched atmospheric surface layer can oxidize rain forest–emitted hydrocarbons. One conclusion derived from the field studies is that the rain forest produces the necessary chemical species and in sufficient amounts to undergo oxidation and generate aerosols that subsequently activate into cloud condensation nuclei.

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [1];  [8];  [1];  [1];  [2];  [9];  [10];  [11];  [12];  [13];  [4];  [7]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Univ. do Estado do Amazonas, Manaus (Brazil)
  3. National Inst. for Space Research (INPE), São José dos Campos (Brazil)
  4. Montana State Univ., Bozeman, MT (United States)
  5. Duke Univ., Durham, NC (United States)
  6. State Univ. of New York (SUNY), Albany, NY (United States). Atmospheric Sciences Research Center
  7. Inst. Nacional de Pesquisas da Amazônia, Manaus (Brazil)
  8. Indiana Univ., Bloomington, IN (United States)
  9. Univ. Federal do Oeste do Pará (UFOPA), Santarém (Brazil)
  10. Univ. Federal do Paraná (UFPR), Curitiba (Brazil)
  11. Inst. de Aeronaútica e Espaço, São Paulo (Brazil). Dept. de Ciência e Tecnologia Aeroespacial
  12. Texas A & M Univ., College Station, TX (United States)
  13. Federal Univ. of Santa Maria (UFSM), Santa Maria (Brazil)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1536979
Grant/Contract Number:  
SC0011075
Resource Type:
Accepted Manuscript
Journal Name:
Bulletin of the American Meteorological Society
Additional Journal Information:
Journal Volume: 97; Journal Issue: 12; Journal ID: ISSN 0003-0007
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Meteorology & Atmospheric Sciences

Citation Formats

Fuentes, Jose D., Chamecki, Marcelo, Nascimento dos Santos, Rosa Maria, Von Randow, Celso, Stoy, Paul C., Katul, Gabriel, Fitzjarrald, David, Manzi, Antonio, Gerken, Tobias, Trowbridge, Amy, Souza Freire, Livia, Ruiz-Plancarte, Jesus, Furtunato Maia, Jair Max, Tóta, Julio, Dias, Nelson, Fisch, Gilberto, Schumacher, Courtney, Acevedo, Otavio, Rezende Mercer, Juliane, and Yañez-Serrano, Ana Maria. Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest. United States: N. p., 2016. Web. doi:10.1175/bams-d-15-00152.1.
Fuentes, Jose D., Chamecki, Marcelo, Nascimento dos Santos, Rosa Maria, Von Randow, Celso, Stoy, Paul C., Katul, Gabriel, Fitzjarrald, David, Manzi, Antonio, Gerken, Tobias, Trowbridge, Amy, Souza Freire, Livia, Ruiz-Plancarte, Jesus, Furtunato Maia, Jair Max, Tóta, Julio, Dias, Nelson, Fisch, Gilberto, Schumacher, Courtney, Acevedo, Otavio, Rezende Mercer, Juliane, & Yañez-Serrano, Ana Maria. Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest. United States. https://doi.org/10.1175/bams-d-15-00152.1
Fuentes, Jose D., Chamecki, Marcelo, Nascimento dos Santos, Rosa Maria, Von Randow, Celso, Stoy, Paul C., Katul, Gabriel, Fitzjarrald, David, Manzi, Antonio, Gerken, Tobias, Trowbridge, Amy, Souza Freire, Livia, Ruiz-Plancarte, Jesus, Furtunato Maia, Jair Max, Tóta, Julio, Dias, Nelson, Fisch, Gilberto, Schumacher, Courtney, Acevedo, Otavio, Rezende Mercer, Juliane, and Yañez-Serrano, Ana Maria. Thu . "Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest". United States. https://doi.org/10.1175/bams-d-15-00152.1. https://www.osti.gov/servlets/purl/1536979.
@article{osti_1536979,
title = {Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest},
author = {Fuentes, Jose D. and Chamecki, Marcelo and Nascimento dos Santos, Rosa Maria and Von Randow, Celso and Stoy, Paul C. and Katul, Gabriel and Fitzjarrald, David and Manzi, Antonio and Gerken, Tobias and Trowbridge, Amy and Souza Freire, Livia and Ruiz-Plancarte, Jesus and Furtunato Maia, Jair Max and Tóta, Julio and Dias, Nelson and Fisch, Gilberto and Schumacher, Courtney and Acevedo, Otavio and Rezende Mercer, Juliane and Yañez-Serrano, Ana Maria},
abstractNote = {We describe the salient features of a field study whose goals are to quantify the vertical distribution of plant-emitted hydrocarbons and their contribution to aerosol and cloud condensation nuclei production above a central Amazonian rain forest. Using observing systems deployed on a 50-m meteorological tower, complemented with tethered balloon deployments, the vertical distribution of hydrocarbons and aerosols was determined under different boundary layer thermodynamic states. The rain forest emits sufficient reactive hydrocarbons, such as isoprene and monoterpenes, to provide precursors of secondary organic aerosols and cloud condensation nuclei. Mesoscale convective systems transport ozone from the middle troposphere, enriching the atmospheric boundary layer as well as the forest canopy and surface layer. Through multiple chemical transformations, the ozone-enriched atmospheric surface layer can oxidize rain forest–emitted hydrocarbons. One conclusion derived from the field studies is that the rain forest produces the necessary chemical species and in sufficient amounts to undergo oxidation and generate aerosols that subsequently activate into cloud condensation nuclei.},
doi = {10.1175/bams-d-15-00152.1},
journal = {Bulletin of the American Meteorological Society},
number = 12,
volume = 97,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A New Look at Aging Aerosols
journal, December 2009


Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments
journal, January 2002


Smoking Rain Clouds over the Amazon
journal, February 2004


Regulated large-scale annual shutdown of Amazonian isoprene emissions?
journal, January 2009

  • Barkley, Michael P.; Palmer, Paul I.; De Smedt, Isabelle
  • Geophysical Research Letters, Vol. 36, Issue 4
  • DOI: 10.1029/2008GL036843

Transport of ozone to the surface by convective downdrafts at night
journal, January 2002


Coherent structures in canopy edge flow: a large-eddy simulation study
journal, July 2009


Turbulence in Plant Canopies
journal, January 2000


Ambient biogenic hydrocarbons and isoprene emissions from a mixed deciduous forest
journal, September 1996

  • Fuentes, J. D.; Wang, D.; Neumann, H. H.
  • Journal of Atmospheric Chemistry, Vol. 25, Issue 1
  • DOI: 10.1007/BF00053286

Biogenic Hydrocarbon Chemistry within and Above a Mixed Deciduous Forest
journal, December 2006

  • Fuentes, Jose D.; Wang, Daniel; Bowling, Dave R.
  • Journal of Atmospheric Chemistry, Vol. 56, Issue 2
  • DOI: 10.1007/s10874-006-9048-4

Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest
journal, January 2016


Cloud modulation of surface solar irradiance at a pasture site in southern Brazil
journal, January 2001


A global model of natural volatile organic compound emissions
journal, January 1995

  • Guenther, Alex; Hewitt, C. Nicholas; Erickson, David
  • Journal of Geophysical Research, Vol. 100, Issue D5
  • DOI: 10.1029/94JD02950

Highly reactive light‐dependent monoterpenes in the Amazon
journal, March 2015

  • Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.
  • Geophysical Research Letters, Vol. 42, Issue 5
  • DOI: 10.1002/2014GL062573

Within-canopy sesquiterpene ozonolysis in Amazonia
journal, January 2011

  • Jardine, K.; Yañez Serrano, A.; Arneth, A.
  • Journal of Geophysical Research, Vol. 116, Issue D19
  • DOI: 10.1029/2011JD016243

Emissions of putative isoprene oxidation products from mango branches under abiotic stress
journal, July 2013

  • Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif
  • Journal of Experimental Botany, Vol. 64, Issue 12
  • DOI: 10.1093/jxb/ert202

Another look at sonic thermometry
journal, September 1991

  • Kaimal, J. C.; Gaynor, J. E.
  • Boundary-Layer Meteorology, Vol. 56, Issue 4
  • DOI: 10.1007/BF00119215

An analysis of intermittency, scaling, and surface renewal in atmospheric surface layer turbulence
journal, March 2006

  • Katul, Gabriel; Porporato, Amilcare; Cava, Daniela
  • Physica D: Nonlinear Phenomena, Vol. 215, Issue 2
  • DOI: 10.1016/j.physd.2006.02.004

Turbulence Statistics Above And Within Two Amazon Rain Forest Canopies
journal, February 2000


Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species
journal, May 2004


The Chuva Project: How Does Convection Vary across Brazil?
journal, September 2014

  • Machado, Luiz A. T.; Silva Dias, Maria A. F.; Morales, Carlos
  • Bulletin of the American Meteorological Society, Vol. 95, Issue 9
  • DOI: 10.1175/BAMS-D-13-00084.1

Radiação solar e distribuição vertical de área foliar em floresta - Reserva Biológica do Cuieiras ZF2, Manaus
journal, December 2005


Sources and properties of Amazonian aerosol particles
journal, January 2010

  • Martin, Scot T.; Andreae, Meinrat O.; Artaxo, Paulo
  • Reviews of Geophysics, Vol. 48, Issue 2
  • DOI: 10.1029/2008RG000280

Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)
journal, January 2016

  • Martin, S. T.; Artaxo, P.; Machado, L. A. T.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 8
  • DOI: 10.5194/acp-16-4785-2016

Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
journal, September 2010


Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent?
journal, July 2001

  • Roberts, Gregory C.; Andreae, Meinrat O.; Zhou, Jingchuan
  • Geophysical Research Letters, Vol. 28, Issue 14
  • DOI: 10.1029/2000GL012585

Reactive hydrocarbon flux footprints during canopy senescence
journal, December 2004


Amazon Rainforest Exchange of Carbon and Subcanopy Air Flow: Manaus LBA Site—A Complex Terrain Condition
journal, January 2012

  • Tóta, Julio; Roy Fitzjarrald, David; da Silva Dias, Maria A. F.
  • The Scientific World Journal, Vol. 2012
  • DOI: 10.1100/2012/165067

The local and global effects of Amazon deforestation
journal, January 2002


Contrasting convective regimes over the Amazon: Implications for cloud electrification
journal, January 2002


Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon Boundary layer
journal, January 1988

  • Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.
  • Journal of Geophysical Research, Vol. 93, Issue D2
  • DOI: 10.1029/JD093iD02p01407

Works referencing / citing this record:

Nighttime wind and scalar variability within and above an Amazonian canopy
journal, January 2018

  • Oliveira, Pablo E. S.; Acevedo, Otávio C.; Sörgel, Matthias
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 5
  • DOI: 10.5194/acp-18-3083-2018

Air-Parcel Residence Times Within Forest Canopies
journal, June 2017

  • Gerken, Tobias; Chamecki, Marcelo; Fuentes, Jose D.
  • Boundary-Layer Meteorology, Vol. 165, Issue 1
  • DOI: 10.1007/s10546-017-0269-7

Atmospheric Boundary Layer Classification With Doppler Lidar
journal, August 2018

  • Manninen, A. J.; Marke, T.; Tuononen, M.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 15
  • DOI: 10.1029/2017jd028169

Effects of Path Averaging in a Sonic Anemometer on the Estimation of Turbulence-Kinetic-Energy Dissipation Rates
journal, June 2019

  • Freire, Livia S.; Dias, Nelson L.; Chamecki, Marcelo
  • Boundary-Layer Meteorology, Vol. 173, Issue 1
  • DOI: 10.1007/s10546-019-00453-4

Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season
journal, January 2019

  • de Sá, Suzane S.; Rizzo, Luciana V.; Palm, Brett B.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 12
  • DOI: 10.5194/acp-19-7973-2019

Land–atmosphere interactions in the tropics – a review
journal, January 2019

  • Gentine, Pierre; Massmann, Adam; Lintner, Benjamin R.
  • Hydrology and Earth System Sciences, Vol. 23, Issue 10
  • DOI: 10.5194/hess-23-4171-2019

Campaign datasets for Observations and Modeling of the Green Ocean Amazon (GOAMAZON)
dataset, January 2016

  • Martin, Scot; Mei, Fan; Alexander, Lizabeth
  • ARM, 64 data sets
  • DOI: 10.5439/1346559

Effects of topography on in‐canopy transport of gases emitted within dense forests
journal, April 2019

  • Chen, Bicheng; Chamecki, Marcelo; Katul, Gabriel G.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 145, Issue 722
  • DOI: 10.1002/qj.3546

Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory
journal, January 2020

  • Oliveira, Maurício I.; Acevedo, Otávio C.; Sörgel, Matthias
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 1
  • DOI: 10.5194/acp-20-15-2020

Turbulent transport of energy across a forest and a semiarid shrubland
journal, January 2018

  • Banerjee, Tirtha; Brugger, Peter; De Roo, Frederik
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 13
  • DOI: 10.5194/acp-18-10025-2018

Turbulent transport of energy across a forest and a semiarid shrubland
text, January 2018