skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr

Abstract

New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th–U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac–Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP0 for PuO2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO2 is predicted to be the 5Σ$$+\atop{0g}$$ state.

Authors:
 [1]; ORCiD logo [1]
  1. Washington State Univ., Pullman, WA (United States)
Publication Date:
Research Org.:
Washington State Univ., Pullman, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1535331
Alternate Identifier(s):
OSTI ID: 1377688
Grant/Contract Number:  
SC0008501; FG02-12ER16329
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 147; Journal Issue: 8; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; Chemistry; Physics

Citation Formats

Feng, Rulin, and Peterson, Kirk A. Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. United States: N. p., 2017. Web. doi:10.1063/1.4994725.
Feng, Rulin, & Peterson, Kirk A. Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. United States. doi:10.1063/1.4994725.
Feng, Rulin, and Peterson, Kirk A. Wed . "Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr". United States. doi:10.1063/1.4994725. https://www.osti.gov/servlets/purl/1535331.
@article{osti_1535331,
title = {Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr},
author = {Feng, Rulin and Peterson, Kirk A.},
abstractNote = {New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th–U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac–Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP0 for PuO2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO2 is predicted to be the 5Σ$+\atop{0g}$ state.},
doi = {10.1063/1.4994725},
journal = {Journal of Chemical Physics},
number = 8,
volume = 147,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Molpro: a general-purpose quantum chemistry program package: Molpro
journal, July 2011

  • Werner, Hans-Joachim; Knowles, Peter J.; Knizia, Gerald
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 2
  • DOI: 10.1002/wcms.82

Coupled cluster theory for high spin, open shell reference wave functions
journal, October 1993

  • Knowles, Peter J.; Hampel, Claudia; Werner, Hans‐Joachim
  • The Journal of Chemical Physics, Vol. 99, Issue 7
  • DOI: 10.1063/1.465990

Measurement of the first ionization potential of lawrencium, element 103
journal, April 2015


The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals
journal, December 2010

  • Konings, Rudy J. M.; Beneš, Ondrej
  • Journal of Physical and Chemical Reference Data, Vol. 39, Issue 4
  • DOI: 10.1063/1.3474238

Ab initio total atomization energies of small molecules — towards the basis set limit
journal, September 1996


Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr
journal, October 2006


Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd
journal, March 2007

  • Peterson, Kirk A.; Figgen, Detlev; Dolg, Michael
  • The Journal of Chemical Physics, Vol. 126, Issue 12
  • DOI: 10.1063/1.2647019

Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb–Ba)+
journal, January 2008

  • Knecht, Stefan; Jensen, Hans Jørgen Aa.; Fleig, Timo
  • The Journal of Chemical Physics, Vol. 128, Issue 1
  • DOI: 10.1063/1.2805369

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Use of Improved Orbitals for CCSD(T) Calculations for Predicting Heats of Formation of Group IV and Group VI Metal Oxide Monomers and Dimers and UCl 6
journal, July 2016

  • Fang, Zongtang; Lee, Zachary; Peterson, Kirk A.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 8
  • DOI: 10.1021/acs.jctc.6b00327

Quantum electrodynamical corrections to the fine structure of helium
journal, January 1974


All-Electron Scalar Relativistic Basis Sets for the Actinides
journal, February 2011

  • Pantazis, Dimitrios A.; Neese, Frank
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 3
  • DOI: 10.1021/ct100736b

An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation
journal, February 2007

  • Iliaš, Miroslav; Saue, Trond
  • The Journal of Chemical Physics, Vol. 126, Issue 6
  • DOI: 10.1063/1.2436882

An efficient internally contracted multiconfiguration–reference configuration interaction method
journal, November 1988

  • Werner, Hans‐Joachim; Knowles, Peter J.
  • The Journal of Chemical Physics, Vol. 89, Issue 9
  • DOI: 10.1063/1.455556

A new internally contracted multi-reference configuration interaction method
journal, August 2011

  • Shamasundar, K. R.; Knizia, Gerald; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 135, Issue 5
  • DOI: 10.1063/1.3609809

Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267]
journal, December 2005


Revision of the Douglas-Kroll transformation
journal, June 1989


An ab initio study of PuO2 and of PuN2
journal, September 2000


Configuration interaction calculations on the nitrogen molecule
journal, January 1974

  • Langhoff, Stephen R.; Davidson, Ernest R.
  • International Journal of Quantum Chemistry, Vol. 8, Issue 1
  • DOI: 10.1002/qua.560080106

Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn
journal, August 2005

  • Balabanov, Nikolai B.; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 123, Issue 6
  • DOI: 10.1063/1.1998907

Transition energies of lanthanum, actinium, and eka-actinium (element 121)
journal, September 1998

  • Eliav, Ephraim; Shmulyian, Sergei; Kaldor, Uzi
  • The Journal of Chemical Physics, Vol. 109, Issue 10
  • DOI: 10.1063/1.476995

Bond energies of ThO + and ThC + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O 2 and CO
journal, May 2016

  • Cox, Richard M.; Citir, Murat; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 144, Issue 18
  • DOI: 10.1063/1.4948812

An efficient method for the evaluation of coupling coefficients in configuration interaction calculations
journal, April 1988


New relativistic ANO basis sets for actinide atoms
journal, June 2005


Passing the one-billion limit in full configuration-interaction (FCI) calculations
journal, June 1990


Ionization Energies for the Actinide Mono- and Dioxides Series, from Th to Cm: Theory versus Experiment
journal, May 2010

  • Infante, Ivan; Kovacs, Attila; Macchia, Giovanni La
  • The Journal of Physical Chemistry A, Vol. 114, Issue 19
  • DOI: 10.1021/jp1016328

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

All-electron Gaussian basis sets of double zeta quality for the actinides
journal, December 2016

  • Martins, L. S. C.; Jorge, F. E.; Franco, M. L.
  • The Journal of Chemical Physics, Vol. 145, Issue 24
  • DOI: 10.1063/1.4973377

Exact two-component Hamiltonians revisited
journal, July 2009

  • Liu, Wenjian; Peng, Daoling
  • The Journal of Chemical Physics, Vol. 131, Issue 3
  • DOI: 10.1063/1.3159445

On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies
journal, July 2011

  • Feller, David; Peterson, Kirk A.; Grant Hill, J.
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3613639

A theoretical study of the ground state and lowest excited states of PuO0/+/+2 and PuO20/+/+2
journal, January 2008

  • La Macchia, Giovanni; Infante, Ivan; Raab, Juraj
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 48
  • DOI: 10.1039/b810744k

Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt
journal, April 2009

  • Figgen, Detlev; Peterson, Kirk A.; Dolg, Michael
  • The Journal of Chemical Physics, Vol. 130, Issue 16
  • DOI: 10.1063/1.3119665

Controversy on the First Ionization Potential of PuO 2 (Nearly) Settled by New Experimental Evidence
journal, December 2005

  • Capone, F.; Colle, J. Y.; Hiernaut, J. P.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 51
  • DOI: 10.1021/jp055452i

Relativistic Gaussian basis sets for the elements K - Uuo
journal, January 2001

  • Faegri Jr, Knut
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 105, Issue 3
  • DOI: 10.1007/s002140000209

Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges
journal, January 2012

  • Peterson, Kirk A.; Feller, David; Dixon, David A.
  • Theoretical Chemistry Accounts, Vol. 131, Issue 1
  • DOI: 10.1007/s00214-011-1079-5

PSEUDOPOTENTIAL STUDIES ON THE ELECTRONIC STRUCTURE OF LANTHANUM MONOHALIDES LaF , LaCl , LaBr , AND LaI
journal, January 2005

  • Cao, Xiaoyan; Dolg, Michael
  • Journal of Theoretical and Computational Chemistry, Vol. 04, Issue spec01
  • DOI: 10.1142/s0219633605001660

Gas-Phase Oxidation Reactions of Neptunium and Plutonium Ions Investigated via Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, August 2002

  • Santos, Marta; Marçalo, Joaquim; Pires de Matos, António
  • The Journal of Physical Chemistry A, Vol. 106, Issue 31
  • DOI: 10.1021/jp025733f

General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms
journal, April 1987

  • Almlöf, Jan; Taylor, Peter R.
  • The Journal of Chemical Physics, Vol. 86, Issue 7
  • DOI: 10.1063/1.451917

The Thermodynamic Properties of the f -Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides
journal, March 2014

  • Konings, Rudy J. M.; Beneš, Ondrej; Kovács, Attila
  • Journal of Physical and Chemical Reference Data, Vol. 43, Issue 1
  • DOI: 10.1063/1.4825256

Composite thermochemistry of gas phase U(VI)-containing molecules
journal, December 2014

  • Bross, David H.; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 141, Issue 24
  • DOI: 10.1063/1.4904721

Correlation consistent, Douglas–Kroll–Hess relativistic basis sets for the 5p and 6p elements
journal, December 2013


An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian
journal, February 1994

  • Dyall, Kenneth G.
  • The Journal of Chemical Physics, Vol. 100, Issue 3
  • DOI: 10.1063/1.466508

Correlation consistent basis sets for actinides. I. The Th and U atoms
journal, February 2015

  • Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 142, Issue 7
  • DOI: 10.1063/1.4907596

Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order
journal, January 2004

  • Reiher, Markus; Wolf, Alexander
  • The Journal of Chemical Physics, Vol. 121, Issue 22
  • DOI: 10.1063/1.1818681

Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides
journal, January 2015

  • Kovács, Attila; Konings, Rudy J. M.; Gibson, John K.
  • Chemical Reviews, Vol. 115, Issue 4
  • DOI: 10.1021/cr500426s

Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
journal, December 2002

  • Peterson, Kirk A.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 117, Issue 23
  • DOI: 10.1063/1.1520138

A fifth-order perturbation comparison of electron correlation theories
journal, May 1989


Search for effective local model potentials for simulation of quantum electrodynamic effects in relativistic calculations
journal, March 2003

  • Pyykk , Pekka; Zhao, Li-Bo
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 36, Issue 8
  • DOI: 10.1088/0953-4075/36/8/302

A diagnostic for determining the quality of single-reference electron correlation methods
journal, April 1989

  • Lee, Timothy J.; Taylor, Peter R.
  • International Journal of Quantum Chemistry, Vol. 36, Issue S23
  • DOI: 10.1002/qua.560360824

Reliable Potential Energy Surfaces for the Reactions of H 2 O with ThO 2 , PaO 2 + , UO 2 2+ , and UO 2 +
journal, November 2015

  • Vasiliu, Monica; Peterson, Kirk A.; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpca.5b08618

Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom
journal, November 2015

  • Bross, David H.; Parmar, Payal; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 143, Issue 18
  • DOI: 10.1063/1.4935375

Relativistic Small-Core Pseudopotentials for Actinium, Thorium, and Protactinium
journal, March 2014

  • Weigand, Anna; Cao, Xiaoyan; Hangele, Tim
  • The Journal of Physical Chemistry A, Vol. 118, Issue 13
  • DOI: 10.1021/jp500215z

Mass Spectrometric Measurement Of the Ionization Energies and Cross Sections Of Uranium and Plutonium Oxide Vapors
journal, December 1999

  • Capone, F.; Colle, Y.; Hiernaut, J. P.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 50
  • DOI: 10.1021/jp992405f

The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
journal, October 1970


Formulation and implementation of a relativistic unrestricted coupled‐cluster method including noniterative connected triples
journal, November 1996

  • Visscher, Lucas; Lee, Timothy J.; Dyall, Kenneth G.
  • The Journal of Chemical Physics, Vol. 105, Issue 19
  • DOI: 10.1063/1.472655

Theoretical prediction of the second to fourth actinide ionization potentials
journal, April 2003


Correlation consistent basis sets for lanthanides: The atoms La–Lu
journal, August 2016

  • Lu, Qing; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 145, Issue 5
  • DOI: 10.1063/1.4959280

A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures
journal, November 2008

  • Feller, David; Peterson, Kirk A.; Dixon, David A.
  • The Journal of Chemical Physics, Vol. 129, Issue 20
  • DOI: 10.1063/1.3008061

    Works referencing / citing this record:

    Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium
    journal, November 2017

    • Dau, Phuong D.; Vasiliu, Monica; Peterson, Kirk A.
    • Chemistry - A European Journal, Vol. 23, Issue 68
    • DOI: 10.1002/chem.201704193

    Gas Phase Hydrolysis and Oxo‐Exchange of Actinide Dioxide Cations: Elucidating Intrinsic Chemistry from Protactinium to Einsteinium
    journal, January 2019

    • Vasiliu, Monica; Gibson, John K.; Peterson, Kirk A.
    • Chemistry – A European Journal, Vol. 25, Issue 17
    • DOI: 10.1002/chem.201803932

    Actinyl cation–cation interactions in the gas phase: an accurate thermochemical study
    journal, January 2019

    • Feng, Rulin; Glendening, Eric D.; Peterson, Kirk A.
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 15
    • DOI: 10.1039/c9cp00760a

    Bond energy of ThN + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N 2 and NO
    journal, July 2019

    • Cox, Richard M.; Kafle, Arjun; Armentrout, P. B.
    • The Journal of Chemical Physics, Vol. 151, Issue 3
    • DOI: 10.1063/1.5111534