skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Translationally symmetric extended MHD via Hamiltonian reduction: Energy-Casimir equilibria

Abstract

The Hamiltonian structure of ideal translationally symmetric extended MHD (XMHD) is obtained by employing a method of Hamiltonian reduction on the three-dimensional noncanonical Poisson bracket of XMHD. The existence of the continuous spatial translation symmetry allows the introduction of Clebsch-like forms for the magnetic and velocity fields. Upon employing the chain rule for functional derivatives, the 3D Poisson bracket is reduced to its symmetric counterpart. The sets of symmetric Hall, Inertial, and extended MHD Casimir invariants are identified, and used to obtain energy-Casimir variational principles for generalized XMHD equilibrium equations with arbitrary macroscopic flows. The obtained set of generalized equations is cast into Grad-Shafranov-Bernoulli (GSB) type, and special cases are investigated: static plasmas, equilibria with longitudinal flows only, and Hall MHD equilibria, where the electron inertia is neglected. The barotropic Hall MHD equilibrium equations are derived as a limiting case of the XMHD GSB system, and a numerically computed equilibrium configuration is presented that shows the separation of ion-flow from electro-magnetic surfaces.

Authors:
 [1];  [1]; ORCiD logo [2]
  1. Univ. of Ioannina, Ioannina (Greece). Dept. of Physics
  2. Univ. of Texas, Austin, TX (United States). Dept. of Physics and Inst. for Fusion Studies
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1535314
Alternate Identifier(s):
OSTI ID: 1374779
Grant/Contract Number:  
FG05-80ET-53088
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 9; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
physics

Citation Formats

Kaltsas, D. A., Throumoulopoulos, G. N., and Morrison, P. J. Translationally symmetric extended MHD via Hamiltonian reduction: Energy-Casimir equilibria. United States: N. p., 2017. Web. doi:10.1063/1.4986013.
Kaltsas, D. A., Throumoulopoulos, G. N., & Morrison, P. J. Translationally symmetric extended MHD via Hamiltonian reduction: Energy-Casimir equilibria. United States. doi:10.1063/1.4986013.
Kaltsas, D. A., Throumoulopoulos, G. N., and Morrison, P. J. Fri . "Translationally symmetric extended MHD via Hamiltonian reduction: Energy-Casimir equilibria". United States. doi:10.1063/1.4986013. https://www.osti.gov/servlets/purl/1535314.
@article{osti_1535314,
title = {Translationally symmetric extended MHD via Hamiltonian reduction: Energy-Casimir equilibria},
author = {Kaltsas, D. A. and Throumoulopoulos, G. N. and Morrison, P. J.},
abstractNote = {The Hamiltonian structure of ideal translationally symmetric extended MHD (XMHD) is obtained by employing a method of Hamiltonian reduction on the three-dimensional noncanonical Poisson bracket of XMHD. The existence of the continuous spatial translation symmetry allows the introduction of Clebsch-like forms for the magnetic and velocity fields. Upon employing the chain rule for functional derivatives, the 3D Poisson bracket is reduced to its symmetric counterpart. The sets of symmetric Hall, Inertial, and extended MHD Casimir invariants are identified, and used to obtain energy-Casimir variational principles for generalized XMHD equilibrium equations with arbitrary macroscopic flows. The obtained set of generalized equations is cast into Grad-Shafranov-Bernoulli (GSB) type, and special cases are investigated: static plasmas, equilibria with longitudinal flows only, and Hall MHD equilibria, where the electron inertia is neglected. The barotropic Hall MHD equilibrium equations are derived as a limiting case of the XMHD GSB system, and a numerically computed equilibrium configuration is presented that shows the separation of ion-flow from electro-magnetic surfaces.},
doi = {10.1063/1.4986013},
journal = {Physics of Plasmas},
number = 9,
volume = 24,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics
journal, September 1980


Remarkable connections between extended magnetohydrodynamics models
journal, July 2015

  • Lingam, M.; Morrison, P. J.; Miloshevich, G.
  • Physics of Plasmas, Vol. 22, Issue 7
  • DOI: 10.1063/1.4926821

Hamiltonian four-field model for nonlinear tokamak dynamics
journal, January 1987

  • Hazeltine, R. D.; Hsu, C. T.; Morrison, P. J.
  • Physics of Fluids, Vol. 30, Issue 10
  • DOI: 10.1063/1.866527

Singular Casimir Elements of the Euler Equation and Equilibrium Points
journal, April 2013

  • Yoshida, Zensho; Morrison, Philip J.; Dobarro, Fernando
  • Journal of Mathematical Fluid Mechanics, Vol. 16, Issue 1
  • DOI: 10.1007/s00021-013-0143-4

Two-fluid low-collisionality equilibrium model and application to spherical torus plasmas
journal, December 2010

  • Ishida, Akio; Steinhauer, Loren C.; Peng, Y. -K. Martin
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3526600

On the variational approach to axisymmetric magnetohydrodynamic equilibria
journal, September 2008

  • Andreussi, T.; Pegoraro, F.
  • Physics of Plasmas, Vol. 15, Issue 9
  • DOI: 10.1063/1.2980426

Über die Ausbreitung von Wellen in einem Plasma
journal, January 1959


Hamiltonian description of the ideal fluid
journal, April 1998


Hamiltonian formalism of extended magnetohydrodynamics
journal, May 2015

  • Abdelhamid, H. M.; Kawazura, Y.; Yoshida, Z.
  • Journal of Physics A: Mathematical and Theoretical, Vol. 48, Issue 23
  • DOI: 10.1088/1751-8113/48/23/235502

Inertial magnetohydrodynamics
journal, March 2015


Modification of magnetohydrodynamic waves by the relativistic Hall effect
journal, July 2017


Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability—Theory
journal, September 2013

  • Andreussi, T.; Morrison, P. J.; Pegoraro, F.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4819779

Azimuthally symmetric magnetohydrodynamic and two-fluid equilibria with arbitrary flows
journal, May 2001


Studies on Magneto-Hydrodynamic Waves and other Anisotropic Wave Motions
journal, March 1960

  • Lighthill, M. J.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 252, Issue 1014
  • DOI: 10.1098/rsta.1960.0010

Ertel's vorticity theorem and new flux surfaces in multi-fluid plasmas
journal, September 2013


Structure and computation of two-dimensional incompressible extended MHD
journal, January 2017

  • Grasso, D.; Tassi, E.; Abdelhamid, H. M.
  • Physics of Plasmas, Vol. 24, Issue 1
  • DOI: 10.1063/1.4974039

Canonical Hamiltonian mechanics of Hall magnetohydrodynamics and its limit to ideal magnetohydrodynamics
journal, July 2013


Derivation of the Hall and extended magnetohydrodynamics brackets
journal, June 2016

  • D'Avignon, Eric C.; Morrison, Philip J.; Lingam, Manasvi
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4952641

Formalism for multi-fluid equilibria with flow
journal, July 1999

  • Steinhauer, Loren C.
  • Physics of Plasmas, Vol. 6, Issue 7
  • DOI: 10.1063/1.873230

MHD equilibrium variational principles with symmetry
journal, March 2010


Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability—Examples with translation symmetry
journal, October 2016

  • Andreussi, T.; Morrison, P. J.; Pegoraro, F.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4964900

Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
journal, June 2013


Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics
journal, July 2016


Hamiltonian magnetohydrodynamics: Helically symmetric formulation, Casimir invariants, and equilibrium variational principles
journal, May 2012

  • Andreussi, T.; Morrison, P. J.; Pegoraro, F.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4714761

Structure and structure-preserving algorithms for plasma physics
journal, April 2017


Action principles for extended magnetohydrodynamic models
journal, September 2014

  • Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4896336

Hamiltonian formulation and analysis of a collisionless fluid reconnection model
journal, June 2008


On Hall magnetohydrodynamics equilibria
journal, October 2006

  • Throumoulopoulos, G. N.; Tasso, H.
  • Physics of Plasmas, Vol. 13, Issue 10
  • DOI: 10.1063/1.2358111

On energy conservation in extended magnetohydrodynamics
journal, August 2014

  • Kimura, Keiji; Morrison, P. J.
  • Physics of Plasmas, Vol. 21, Issue 8
  • DOI: 10.1063/1.4890955

Two-fluid equilibrium with flow: FLOW2
journal, September 2015

  • Guazzotto, L.; Betti, R.
  • Physics of Plasmas, Vol. 22, Issue 9
  • DOI: 10.1063/1.4929854