skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Temperature-dependent optical properties of titanium nitride

Abstract

The refractory metal titanium nitride is promising for high-temperature nanophotonic and plasmonic applications, but its optical properties have not been studied at temperatures exceeding 400 °C. In this study, we perform in-situ high-temperature ellipsometry to quantify the permittivity of TiN films from room temperature to 1258 °C. We find that the material becomes more absorptive at higher temperatures but maintains its metallic character throughout visible and near infrared frequencies. X-ray diffraction, atomic force microscopy, and mass spectrometry confirm that TiN retains its bulk crystal quality and that thermal cycling increases the surface roughness, reduces the lattice constant, and reduces the carbon and oxygen contaminant concentrations. The changes in the optical properties of the material are highly reproducible upon repeated heating and cooling, and the room-temperature properties are fully recoverable after cooling. Using the measured high-temperature permittivity, we compute the emissivity, surface plasmon polariton propagation length, and two localized surface plasmon resonance figures of merit as functions of temperature. Our results indicate that titanium nitride is a viable plasmonic material throughout the full temperature range explored.

Authors:
 [1];  [2];  [3];  [4];  [5];  [4];  [3];  [3]
  1. Stanford Univ., Stanford, CA (United States). Dept. of Applied Physics; Stanford Univ., Stanford, CA (United States). Dept. of Materials Science and Engineering
  2. Rice Univ., Houston, TX (United States). Dept. of Electrical and Computer Engineering
  3. Stanford Univ., Stanford, CA (United States). Dept. of Materials Science and Engineering
  4. Stanford Univ., Stanford, CA (United States). Dept. of Physics
  5. Stanford Univ., Stanford, CA (United States). Dept. of Applied Physics
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1535303
Grant/Contract Number:  
SC0001293
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 110; Journal Issue: 10; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; physics

Citation Formats

Briggs, Justin A., Naik, Gururaj V., Zhao, Yang, Petach, Trevor A., Sahasrabuddhe, Kunal, Goldhaber-Gordon, David, Melosh, Nicholas A., and Dionne, Jennifer A. Temperature-dependent optical properties of titanium nitride. United States: N. p., 2017. Web. doi:10.1063/1.4977840.
Briggs, Justin A., Naik, Gururaj V., Zhao, Yang, Petach, Trevor A., Sahasrabuddhe, Kunal, Goldhaber-Gordon, David, Melosh, Nicholas A., & Dionne, Jennifer A. Temperature-dependent optical properties of titanium nitride. United States. doi:10.1063/1.4977840.
Briggs, Justin A., Naik, Gururaj V., Zhao, Yang, Petach, Trevor A., Sahasrabuddhe, Kunal, Goldhaber-Gordon, David, Melosh, Nicholas A., and Dionne, Jennifer A. Mon . "Temperature-dependent optical properties of titanium nitride". United States. doi:10.1063/1.4977840. https://www.osti.gov/servlets/purl/1535303.
@article{osti_1535303,
title = {Temperature-dependent optical properties of titanium nitride},
author = {Briggs, Justin A. and Naik, Gururaj V. and Zhao, Yang and Petach, Trevor A. and Sahasrabuddhe, Kunal and Goldhaber-Gordon, David and Melosh, Nicholas A. and Dionne, Jennifer A.},
abstractNote = {The refractory metal titanium nitride is promising for high-temperature nanophotonic and plasmonic applications, but its optical properties have not been studied at temperatures exceeding 400 °C. In this study, we perform in-situ high-temperature ellipsometry to quantify the permittivity of TiN films from room temperature to 1258 °C. We find that the material becomes more absorptive at higher temperatures but maintains its metallic character throughout visible and near infrared frequencies. X-ray diffraction, atomic force microscopy, and mass spectrometry confirm that TiN retains its bulk crystal quality and that thermal cycling increases the surface roughness, reduces the lattice constant, and reduces the carbon and oxygen contaminant concentrations. The changes in the optical properties of the material are highly reproducible upon repeated heating and cooling, and the room-temperature properties are fully recoverable after cooling. Using the measured high-temperature permittivity, we compute the emissivity, surface plasmon polariton propagation length, and two localized surface plasmon resonance figures of merit as functions of temperature. Our results indicate that titanium nitride is a viable plasmonic material throughout the full temperature range explored.},
doi = {10.1063/1.4977840},
journal = {Applied Physics Letters},
number = 10,
volume = 110,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion
journal, October 2015

  • Lalisse, Adrien; Tessier, Gilles; Plain, Jérome
  • The Journal of Physical Chemistry C, Vol. 119, Issue 45
  • DOI: 10.1021/acs.jpcc.5b09294

Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer
journal, March 2009


Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures
journal, October 2012

  • Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan
  • Nature Materials, Vol. 11, Issue 12
  • DOI: 10.1038/nmat3454

Plasmonic near-field transducer for heat-assisted magnetic recording
journal, January 2014


Experimental demonstration of titanium nitride plasmonic interconnects
journal, January 2014


Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles
journal, June 2004


Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry
journal, January 2014

  • Tripura Sundari, S.; Ramaseshan, R.; Jose, Feby
  • Journal of Applied Physics, Vol. 115, Issue 3
  • DOI: 10.1063/1.4862485

Heat Assisted Magnetic Recording
journal, November 2008


Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing
journal, August 2015

  • Wong, Wei Ru; Krupin, Oleksiy; Mahamd Adikan, Faisal Rafiq
  • Journal of Lightwave Technology, Vol. 33, Issue 15
  • DOI: 10.1109/JLT.2015.2431612

Refractory Plasmonics
journal, April 2014


Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber
journal, October 2014


High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals
journal, January 2013

  • Rinnerbauer, Veronika; Yeng, Yi Xiang; Chan, Walker R.
  • Optics Express, Vol. 21, Issue 9, p. 11482-11491
  • DOI: 10.1364/OE.21.011482

Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials
journal, May 2014

  • Naik, G. V.; Saha, B.; Liu, J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 21
  • DOI: 10.1073/pnas.1319446111

Theoretical limits of thermophotovoltaic solar energy conversion
journal, April 2003


Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN
journal, December 1994


Temperature-dependent optical properties of gold thin films
journal, January 2016

  • Reddy, Harsha; Guler, Urcan; Kildishev, Alexander V.
  • Optical Materials Express, Vol. 6, Issue 9
  • DOI: 10.1364/OME.6.002776

Fully CMOS-compatible titanium nitride nanoantennas
journal, February 2016

  • Briggs, Justin A.; Naik, Gururaj V.; Petach, Trevor A.
  • Applied Physics Letters, Vol. 108, Issue 5
  • DOI: 10.1063/1.4941413

Quasi-coherent thermal emitter based on refractory plasmonic materials
journal, January 2015

  • Liu, Jingjing; Guler, Urcan; Lagutchev, Alexei
  • Optical Materials Express, Vol. 5, Issue 12
  • DOI: 10.1364/OME.5.002721

Alternative Plasmonic Materials: Beyond Gold and Silver
journal, May 2013

  • Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra
  • Advanced Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adma.201205076

    Works referencing / citing this record:

    Titanium Nitride Modified Photoluminescence from Single Semiconductor Nanoplatelets
    journal, October 2019

    • Peng, Lintao; Wang, Xuejing; Coropceanu, Igor
    • Advanced Functional Materials, Vol. 30, Issue 4
    • DOI: 10.1002/adfm.201904179

    Non‐Hermitian Selective Thermal Emitters using Metal–Semiconductor Hybrid Resonators
    journal, September 2019


    The Quest for Zero Loss: Unconventional Materials for Plasmonics
    journal, December 2019

    • Cortie, Michael B.; Arnold, Matthew D.; Keast, Vicki J.
    • Advanced Materials, Vol. 32, Issue 18
    • DOI: 10.1002/adma.201904532

    Optimization of Perfect Absorbers with Multilayer Structures
    journal, January 2018


    Superresolution stimulated Raman scattering microscopy using 2-ENZ nano-composites
    journal, January 2019

    • Kharintsev, Sergey S.; Kharitonov, Anton V.; Alekseev, Alexander M.
    • Nanoscale, Vol. 11, Issue 16
    • DOI: 10.1039/c8nr09890e

    Semiconductors for high selectivity thermal emitters
    journal, June 2018


    Optimization of a perfect absorber multilayer structure by genetic algorithms
    journal, April 2018

    • Li Voti, Roberto
    • Journal of the European Optical Society-Rapid Publications, Vol. 14, Issue 1
    • DOI: 10.1186/s41476-018-0079-7

    Temperature stability of thin film refractory plasmonic materials
    journal, January 2018

    • Wells, Matthew P.; Bower, Ryan; Kilmurray, Rebecca
    • Optics Express, Vol. 26, Issue 12
    • DOI: 10.1364/oe.26.015726

    Tunable optical materials for multi-resonant plasmonics: from TiN to TiON [Invited]
    journal, January 2020

    • Kharitonov, Anton; Kharintsev, Sergey
    • Optical Materials Express, Vol. 10, Issue 2
    • DOI: 10.1364/ome.382160

    Cryogenic characterization of titanium nitride thin films
    journal, January 2019

    • Vertchenko, Larissa; Leandro, Lorenzo; Shkondin, Evgeniy
    • Optical Materials Express, Vol. 9, Issue 5
    • DOI: 10.1364/ome.9.002117

    Thermal oxidation of TiN nanocylinder arrays: effects of insulator coatings by atomic layer deposition
    journal, January 2019

    • Goya, Shinya; Murai, Shunsuke; Tanaka, Katsuhisa
    • Optical Materials Express, Vol. 9, Issue 12
    • DOI: 10.1364/ome.9.004751