DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries

Abstract

Here, thermal behavior of the solid electrolyte interphase (SEI) on a silicon electrode for lithium ion batteries has been investigated by TGA. In order to provide a better understanding of the thermal decomposition of the SEI on silicon, the thermal decomposition behavior of independently synthesized lithium ethylene dicarbonate (LEDC) was investigated as a model SEI. The model SEI (LEDC) has three stages of thermal decomposition. Over the temperature range of 50–300 °C, LEDC decomposes to evolve CO2 and C2H4 gases leaving lithium propionate (CH3CH2CO2Li) and Li2CO3 as solid residues. The lithium propionate decomposes over the temperature range of 300–600 °C to evolve pentanone leaving Li2CO3 as a residual solid. Finally, the Li2CO3 decomposes over 600 °C to evolve CO2 leaving Li2O as a residual solid. A very similar thermal decomposition process is observed for the SEI generated on cycled silicon electrodes. However, two additional thermal decomposition reactions were observed characteristic of LixPOyFz at 300 °C and the polyimide binder at 550 °C. TGA measurements of Si electrodes after various numbers of cycles suggest that the LEDC on Si electrodes thermally decomposes during cycling to form lithium propionate and Li2CO3, resulting in increased complexity of the SEI.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of Rhode Island, Kingston, RI (United States)
Publication Date:
Research Org.:
Brown Univ., Providence, RI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1534459
Grant/Contract Number:  
SC0007074
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 7; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; Chemistry; Materials science; Degradation; Organic reactions; Electrodes; Surface chemistry; Silicon

Citation Formats

Yoon, Taeho, Milien, Mickdy S., Parimalam, Bharathy S., and Lucht, Brett L. Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b00454.
Yoon, Taeho, Milien, Mickdy S., Parimalam, Bharathy S., & Lucht, Brett L. Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries. United States. https://doi.org/10.1021/acs.chemmater.7b00454
Yoon, Taeho, Milien, Mickdy S., Parimalam, Bharathy S., and Lucht, Brett L. Fri . "Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries". United States. https://doi.org/10.1021/acs.chemmater.7b00454. https://www.osti.gov/servlets/purl/1534459.
@article{osti_1534459,
title = {Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries},
author = {Yoon, Taeho and Milien, Mickdy S. and Parimalam, Bharathy S. and Lucht, Brett L.},
abstractNote = {Here, thermal behavior of the solid electrolyte interphase (SEI) on a silicon electrode for lithium ion batteries has been investigated by TGA. In order to provide a better understanding of the thermal decomposition of the SEI on silicon, the thermal decomposition behavior of independently synthesized lithium ethylene dicarbonate (LEDC) was investigated as a model SEI. The model SEI (LEDC) has three stages of thermal decomposition. Over the temperature range of 50–300 °C, LEDC decomposes to evolve CO2 and C2H4 gases leaving lithium propionate (CH3CH2CO2Li) and Li2CO3 as solid residues. The lithium propionate decomposes over the temperature range of 300–600 °C to evolve pentanone leaving Li2CO3 as a residual solid. Finally, the Li2CO3 decomposes over 600 °C to evolve CO2 leaving Li2O as a residual solid. A very similar thermal decomposition process is observed for the SEI generated on cycled silicon electrodes. However, two additional thermal decomposition reactions were observed characteristic of LixPOyFz at 300 °C and the polyimide binder at 550 °C. TGA measurements of Si electrodes after various numbers of cycles suggest that the LEDC on Si electrodes thermally decomposes during cycling to form lithium propionate and Li2CO3, resulting in increased complexity of the SEI.},
doi = {10.1021/acs.chemmater.7b00454},
journal = {Chemistry of Materials},
number = 7,
volume = 29,
place = {United States},
year = {Fri Mar 17 00:00:00 EDT 2017},
month = {Fri Mar 17 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 82 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Cycling performances of the silicon/Li half-cell. Cy-cleability is displayed in upper panel in which lithiation/delithiation capacities are presented by white and black circles respectively. The lower panel is the corresponding Coulombic efficiency. Cut-off : 0.7~0.005 V (vs. Li/Li + ), Current : 1167 mA g -1 (1/3 C-rate,more » 0.76 mA cm -2 )« less

Save / Share:

Works referenced in this record:

Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions
journal, January 1987

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 134, Issue 7
  • DOI: 10.1149/1.2100722

Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Thermal Stability Studies of Li-Ion Cells and Components
journal, January 1999

  • Maleki, Hossein
  • Journal of The Electrochemical Society, Vol. 146, Issue 9
  • DOI: 10.1149/1.1392458

Thermal stability of graphite anode with electrolyte in lithium-ion cells
journal, June 2002


The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes
journal, May 2002


Thermalgravimetry–mass spectrometry studies on the thermal stability of graphite anodes with electrolyte in lithium-ion battery
journal, February 2006


A Comparative Study on Thermal Stability of Two Solid Electrolyte Interphase (SEI) Films on Graphite Negative Electrode
journal, January 2013

  • Park, Hosang; Yoon, Taeho; Mun, Junyoung
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.095309jes

Thermal Behavior of Solid Electrolyte Interphase Films Deposited on Graphite Electrodes with Different States-of-Charge
journal, January 2015

  • Park, Hosang; Yoon, Taeho; Kim, Youngjin
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0431506jes

Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-Ion Batteries
journal, January 1998

  • Pasquier, A. Du
  • Journal of The Electrochemical Society, Vol. 145, Issue 2
  • DOI: 10.1149/1.1838287

Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte
journal, December 2008

  • Choi, Nam-Soon; Profatilova, Irina A.; Kim, Sung-Soo
  • Thermochimica Acta, Vol. 480, Issue 1-2
  • DOI: 10.1016/j.tca.2008.09.017

Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate
journal, July 2009


Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer
journal, November 2012


Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental
journal, June 1999

  • Richard, M. N.
  • Journal of The Electrochemical Society, Vol. 146, Issue 6
  • DOI: 10.1149/1.1391893

Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate
journal, January 2013


Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries
journal, March 2006

  • Xu, Kang; Zhuang, Guorong V.; Allen, Jan L.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 15
  • DOI: 10.1021/jp0601522

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Thermal and carbothermic decomposition of Na2CO3 and Li2CO3
journal, February 2001


Lithium C 1 –C 12 n -Alkanoates: Thermal Behavior from −30 °C to 600 °C
journal, March 2013

  • Bui, Huong Ly; de Klerk, Arno
  • Journal of Chemical & Engineering Data, Vol. 58, Issue 4
  • DOI: 10.1021/je400054m

TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries
journal, October 2006


Dynamic TGA–FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell
journal, May 2007


Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries
journal, September 2009


Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes
journal, March 2008


Water-soluble binders for MCMB carbon anodes for lithium-ion batteries
journal, February 2011

  • Courtel, Fabrice M.; Niketic, Svetlana; Duguay, Dominique
  • Journal of Power Sources, Vol. 196, Issue 4, p. 2128-2134
  • DOI: 10.1016/j.jpowsour.2010.10.025

Preparation of poly(acrylic acid)–graphite oxide superabsorbent nanocomposites
journal, January 2012

  • Zhu, Zhao-Qi; Sun, Han-Xue; Qin, Xiao-Juan
  • Journal of Materials Chemistry, Vol. 22, Issue 11
  • DOI: 10.1039/c2jm14210d

New insights into the silicon-based electrode's irreversibility along cycle life through simple gravimetric method
journal, December 2012


A Calculation Model to Assess Two Irreversible Capacities Evolved in Silicon Negative Electrodes
journal, January 2015

  • Lee, Jae Gil; Kim, Jongjung; Park, Hosang
  • Journal of The Electrochemical Society, Vol. 162, Issue 8
  • DOI: 10.1149/2.0821508jes

Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes
journal, September 2016

  • Yoon, Taeho; Chapman, Navid; Nguyen, Cao Cuong
  • Journal of Materials Science, Vol. 52, Issue 7
  • DOI: 10.1007/s10853-016-0442-2

Reduction Reactions of Carbonate Solvents for Lithium Ion Batteries
journal, January 2014

  • Seo, D. M.; Chalasani, D.; Parimalam, B. S.
  • ECS Electrochemistry Letters, Vol. 3, Issue 9
  • DOI: 10.1149/2.0021409eel

Development of Lithium Dimethyl Phosphate as an Electrolyte Additive for Lithium Ion Batteries
journal, January 2016

  • Milien, Mickdy S.; Tottempudi, Usha; Son, Miyoung
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1131607jes

Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries
journal, January 2015

  • Yoon, Taeho; Nguyen, Cao Cuong; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0731512jes

Chemical Redox Agents for Organometallic Chemistry
journal, January 1996

  • Connelly, Neil G.; Geiger, William E.
  • Chemical Reviews, Vol. 96, Issue 2
  • DOI: 10.1021/cr940053x

Failure and Stabilization Mechanisms of Graphite Electrodes
journal, March 1997

  • Aurbach, Doron; Levi, Mikhail D.; Levi, Elena
  • The Journal of Physical Chemistry B, Vol. 101, Issue 12
  • DOI: 10.1021/jp962815t

Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes
journal, January 2001

  • Zhang, Shengshui; Ding, Michael S.; Xu, Kang
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 12
  • DOI: 10.1149/1.1414946

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF 6 /EC:EMC Electrolyte
journal, September 2005

  • Zhuang, Guorong V.; Xu, Kang; Yang, Hui
  • The Journal of Physical Chemistry B, Vol. 109, Issue 37
  • DOI: 10.1021/jp052474w

Analysis of the Chemical Composition of the Passive Film on Li-Ion Battery Anodes Using Attentuated Total Reflection Infrared Spectroscopy
journal, January 2003

  • Zhuang, Guorong V.; Ross, Philip N.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 7
  • DOI: 10.1149/1.1575594

Electrolyte Reactions with the Surface of High Voltage LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Cathodes for Lithium-Ion Batteries
journal, January 2010

  • Yang, Li; Ravdel, Boris; Lucht, Brett L.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 8
  • DOI: 10.1149/1.3428515

Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study
journal, August 2005

  • Dedryvère, R.; Gireaud, L.; Grugeon, S.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 33
  • DOI: 10.1021/jp051626k

Crystal Structure of K2[C2O6]—First Proof of Existence and Constitution of a Peroxodicarbonate Ion This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie. Research was carried out in part at the National Synchrotron Light Source at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences. The SUNY X3 beamline at NSLS is supported by the Division of Basic Energy Sciences of the US Department of Energy under Grant No. DE-FG02-86ER45231. Work at Stony Brook was partially supported by the National Science Foundation. We thank Michael Knapp from beamline B2 (Hasylab) for the measurements at Hasylab.
journal, June 2002


First Spectroscopic Observation of Peroxocarbonate/ Peroxodicarbonate in Molten Carbonate
journal, June 2004

  • Chen, Li-Jiang; Lin, Chang-Jian; Zuo, Juan
  • The Journal of Physical Chemistry B, Vol. 108, Issue 23
  • DOI: 10.1021/jp035749l

Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study
journal, June 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja403082s

Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries
journal, August 2015

  • Young, Benjamin T.; Heskett, David R.; Nguyen, Cao Cuong
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 36
  • DOI: 10.1021/acsami.5b04845

The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes
journal, August 2015


Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li–air batteries
journal, January 2013

  • Beyer, H.; Meini, S.; Tsiouvaras, N.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 26
  • DOI: 10.1039/c3cp51056e

Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries
journal, January 2005

  • Campion, Christopher L.; Li, Wentao; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 152, Issue 12
  • DOI: 10.1149/1.2083267

Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries
journal, September 2016


Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


Evidence for Spontaneous Release of Acrylates from a Transition-Metal Complex Upon Coupling Ethene or Propene with a Carboxylic Moiety or CO2
journal, November 2007

  • Aresta, Michele; Pastore, Carlo; Giannoccaro, Potenzo
  • Chemistry - A European Journal, Vol. 13, Issue 32
  • DOI: 10.1002/chem.200700532

Works referencing / citing this record:

In situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron X‐ray Imaging
journal, October 2018


Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation
journal, January 2017

  • Yoon, Taeho; Chapman, Navid; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1421709jes

Effect of Dual‐Salt Concentrated Electrolytes on the Electrochemical Performance of Silicon Nanoparticles
journal, January 2020


Pulverization‐Tolerance and Capacity Recovery of Copper Sulfide for High‐Performance Sodium Storage
journal, April 2019


The Investigation of Electrolyte Oxidation and Film Deposition Characteristics at High Potentials in a Carbonate-Based Electrolyte Using Pt Electrode
journal, January 2018

  • Yoon, Taeho; Lee, Taejin; Soon, Jiyong
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0931805jes

An in situ formed graphene oxide–polyacrylic acid composite cage on silicon microparticles for lithium ion batteries via an esterification reaction
journal, January 2019

  • Jung, Chul-Ho; Kim, Kyeong-Ho; Hong, Seong-Hyeon
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/c9ta02654a

In situ combined analysis of gases and electrochemical signals of an activated carbon-based supercapacitor at 2.7–4 V
journal, January 2018