DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials

Abstract

Co-sintering ceramic and thermoplastic polymer composites in a single step with very high volume fractions of ceramics seems unlikely, given the vast differences in the typical sintering temperatures of ceramics versus polymers. These processing limitations are overcome with the introduction of a new sintering approach, namely “cold sintering process” (CSP). CSP utilizes a transient low temperature solvent, such as water or water with dissolved solutes in stoichiometric ratios consistent with the ceramic composition, to control the dissolution and precipitation of ceramics and effect densification between room temperature and ≈200 °C. Under these conditions, thermoplastic polymers and ceramic materials can be jointly formed into dense composites. Three diphasic composite examples are demonstrated to show the overall diversity of composite material design between organic and inorganic oxides, including the microwave dielectric Li2MoO4–(-C2F4 -) n, electrolyte Li1.5Al0.5Ge1.5(PO4)3–(-CH2CF2-) x [-CF2CF(CF3)-] y, and semiconductor V2O5–poly(3,4-ethylenedioxythiophene) polystyrene sulfonate composites. Cold sintering is more general and shall have a major impact on the processing of composite materials for many different applications, mechanical, thermal, and electronic, to mention a few possibilities. CSP concepts open up new composite material design and device integration schemes, impacting a wide variety of applications.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1533010
Grant/Contract Number:  
EE0005575
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 26; Journal Issue: 39; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; chemistry; science & technology; materials science; physics; ceramic–polymer composites cold sintering dielectrics electrolytes semiconductors

Citation Formats

Guo, Jing, Berbano, Seth S., Guo, Hanzheng, Baker, Amanda L., Lanagan, Michael T., and Randall, Clive A. Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials. United States: N. p., 2016. Web. doi:10.1002/adfm.201602489.
Guo, Jing, Berbano, Seth S., Guo, Hanzheng, Baker, Amanda L., Lanagan, Michael T., & Randall, Clive A. Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials. United States. https://doi.org/10.1002/adfm.201602489
Guo, Jing, Berbano, Seth S., Guo, Hanzheng, Baker, Amanda L., Lanagan, Michael T., and Randall, Clive A. Thu . "Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials". United States. https://doi.org/10.1002/adfm.201602489. https://www.osti.gov/servlets/purl/1533010.
@article{osti_1533010,
title = {Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials},
author = {Guo, Jing and Berbano, Seth S. and Guo, Hanzheng and Baker, Amanda L. and Lanagan, Michael T. and Randall, Clive A.},
abstractNote = {Co-sintering ceramic and thermoplastic polymer composites in a single step with very high volume fractions of ceramics seems unlikely, given the vast differences in the typical sintering temperatures of ceramics versus polymers. These processing limitations are overcome with the introduction of a new sintering approach, namely “cold sintering process” (CSP). CSP utilizes a transient low temperature solvent, such as water or water with dissolved solutes in stoichiometric ratios consistent with the ceramic composition, to control the dissolution and precipitation of ceramics and effect densification between room temperature and ≈200 °C. Under these conditions, thermoplastic polymers and ceramic materials can be jointly formed into dense composites. Three diphasic composite examples are demonstrated to show the overall diversity of composite material design between organic and inorganic oxides, including the microwave dielectric Li2MoO4–(-C2F4 -) n, electrolyte Li1.5Al0.5Ge1.5(PO4)3–(-CH2CF2-) x [-CF2CF(CF3)-] y, and semiconductor V2O5–poly(3,4-ethylenedioxythiophene) polystyrene sulfonate composites. Cold sintering is more general and shall have a major impact on the processing of composite materials for many different applications, mechanical, thermal, and electronic, to mention a few possibilities. CSP concepts open up new composite material design and device integration schemes, impacting a wide variety of applications.},
doi = {10.1002/adfm.201602489},
journal = {Advanced Functional Materials},
number = 39,
volume = 26,
place = {United States},
year = {Thu Aug 18 00:00:00 EDT 2016},
month = {Thu Aug 18 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 193 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Composite electroceramics
journal, January 1986


Lithium conducting glass ceramic with Nasicon structure
journal, July 2002


Ceramic–Polymer Composites with High Dielectric Constant
journal, May 2007


Microwave Sintering of Ceramics
journal, August 1992


Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

A new ferroelectric-semiconductor V2O5
journal, January 1980


Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics
journal, August 2011


Flash Sintering of Nanograin Zirconia in <5 s at 850°C
journal, September 2010


Electrochemical properties of a ceramic-polymer-composite-solid electrolyte for Li-ion batteries
journal, January 2016


Dielectric Properties of Lithium Molybdate Ceramic Fabricated at Room Temperature
journal, October 2014

  • Kähäri, Hanna; Teirikangas, Merja; Juuti, Jari
  • Journal of the American Ceramic Society, Vol. 97, Issue 11
  • DOI: 10.1111/jace.13277

Lithium-Ion Cells Assembled with Flexible Hybrid Membrane Containing Li + -Conducting Lithium Aluminum Germanium Phosphate
journal, January 2016

  • Kim, Seul-Ki; Jung, Yun-Chae; Kim, Duck-Hyun
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0831606jes

On the equilibrium of heterogeneous substances
journal, December 1878


Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries
journal, April 2015


Overview of Fine-Scale Piezoelectric Ceramic/Polymer Composite Processing
journal, November 1995


Fast low-temperature consolidation of bulk nanometric ceramic materials
journal, March 2006


Average Grain Size in Polycrystalline Ceramics
journal, August 1969


Fabrication, microstructure and electrical conductivity of V2O5 ceramics
journal, May 1996


Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic
journal, January 2012

  • Mariappan, Chinnasamy R.; Gellert, Michael; Yada, Chihiro
  • Electrochemistry Communications, Vol. 14, Issue 1
  • DOI: 10.1016/j.elecom.2011.10.022

Marangoni Flow-Induced Self-Assembly of Hexagonal and Stripelike Nanoparticle Patterns
journal, May 2008

  • Cai, Yangjun; Zhang Newby, Bi-min
  • Journal of the American Chemical Society, Vol. 130, Issue 19
  • DOI: 10.1021/ja801438u

Preparation of LAGP/P(VDF-HFP) polymer electrolytes for Li-ion batteries
journal, January 2015

  • Zhang, Qingqing; Ding, Fei; Sun, Wenbin
  • RSC Advances, Vol. 5, Issue 80
  • DOI: 10.1039/C5RA09837H

Electrical properties of vanadium pentoxide doped with lithium and sodium in the ?-phase range
journal, January 1976

  • Chakrabarty, D. K.; Guha, Dipak; Biswas, A. B.
  • Journal of Materials Science, Vol. 11, Issue 7
  • DOI: 10.1007/BF00545157

A dislocation model for two-level electron-hopping conductivity in V2O5: Implications for catalysis
journal, May 1971


Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties
journal, October 2012

  • Gellert, Michael; Gries, Katharina I.; Yada, Chihiro
  • The Journal of Physical Chemistry C, Vol. 116, Issue 43
  • DOI: 10.1021/jp305309r

Microwave Sintering of Ceramics
book, January 2021


Composite Electroceramics
journal, August 1986


Works referencing / citing this record:

Ceramic–Salt Composite Electrolytes from Cold Sintering
journal, April 2019

  • Lee, Wonho; Lyon, Christopher K.; Seo, Joo‐Hwan
  • Advanced Functional Materials, Vol. 29, Issue 20
  • DOI: 10.1002/adfm.201807872

Cold‐Sintered C0G Multilayer Ceramic Capacitors
journal, April 2019

  • Wang, Dawei; Zhou, Di; Song, Kaixin
  • Advanced Electronic Materials, Vol. 5, Issue 7
  • DOI: 10.1002/aelm.201900025

Cold Sintering of a Covalently Bonded MoS 2 /Graphite Composite as a High Capacity Li-Ion Electrode
journal, September 2018

  • Nayir, Selda; Waryoba, Daudi R.; Rajagopalan, Ramakrishnan
  • ChemNanoMat, Vol. 4, Issue 10
  • DOI: 10.1002/cnma.201800342

Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization
journal, November 2018

  • Manoukian, Ohan S.; Stratton, Scott; Arul, Michael R.
  • Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 107, Issue 6
  • DOI: 10.1002/jbm.b.34272

Effect of NaCl on the microstructure and electrical properties of K0.5Na0.5NbO3 ceramics prepared by cold sintering process
journal, November 2019

  • Chi, Mengshuang; Ma, Weibing; Guo, Jingdong
  • Journal of Materials Science: Materials in Electronics, Vol. 30, Issue 24
  • DOI: 10.1007/s10854-019-02523-2

Utilizing the cold sintering process for sintering the thermally decomposable lead dioxide
journal, November 2019

  • Al-Hydary, I. A. D.; Abdullah, A. M.; Al-dujaili, M. A. A.
  • Journal of the Australian Ceramic Society, Vol. 56, Issue 1
  • DOI: 10.1007/s41779-019-00432-5

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li 1+x Al x Ti 2−x (PO 4 ) 3 (LATP)
journal, January 2018

  • Shin, Yun Kyung; Sengul, Mert Y.; Jonayat, A. S. M.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 34
  • DOI: 10.1039/c8cp03586e

Structural and electrical characterization of NaNbO 3 -PVDF nanocomposites fabricated using cold sintering synthesis route
journal, January 2019

  • Gyan, Deepankar Sri; Dwivedi, Akansha
  • Journal of Applied Physics, Vol. 125, Issue 2
  • DOI: 10.1063/1.5046458

A theoretical analysis of cold sintering
journal, November 2019


A review of cold sintering processes
journal, January 2020


Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics
journal, October 2016

  • Funahashi, Shuichi; Guo, Jing; Guo, Hanzheng
  • Journal of the American Ceramic Society, Vol. 100, Issue 2
  • DOI: 10.1111/jace.14617

Plastic deformation and effects of water in room‐temperature cold sintering of NaCl microwave dielectric ceramics
journal, April 2018

  • Hong, Wen Bin; Li, Lei; Cao, Meng
  • Journal of the American Ceramic Society, Vol. 101, Issue 9
  • DOI: 10.1111/jace.15572

Solvent‐deficient method lowers grain‐boundary resistivity of doped ceria
journal, September 2019

  • Maruyama, Hiraku; Zeljković, Saša; Nino, Juan C.
  • Journal of the American Ceramic Society, Vol. 103, Issue 2
  • DOI: 10.1111/jace.16779

Toward a size scale‐up cold sintering process at reduced uniaxial pressure
journal, December 2019

  • Bang, Sun Hwi; Tsuji, Kosuke; Ndayishimiye, Arnaud
  • Journal of the American Ceramic Society, Vol. 103, Issue 4
  • DOI: 10.1111/jace.16976

Thermosetting polymers in cold sintering: The fabrication of ZnO‐polydimethylsiloxane composites
journal, January 2020

  • Ndayishimiye, Arnaud; Grady, Zane A.; Tsuji, Kosuke
  • Journal of the American Ceramic Society, Vol. 103, Issue 5
  • DOI: 10.1111/jace.17009

Cold sintering: Current status and prospects
journal, July 2017

  • Maria, Jon-Paul; Kang, Xiaoyu; Floyd, Richard D.
  • Journal of Materials Research, Vol. 32, Issue 17
  • DOI: 10.1557/jmr.2017.262

Temperature Stable Cold Sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 Microwave Dielectric Composites
journal, April 2019


A theoretical analysis of cold sintering
text, January 2019


Temperature Stable Cold Sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 Microwave Dielectric Composites
journal, April 2019