DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The impact of lidar detection sensitivity on assessing aerosol direct radiative effects: LIDAR SENSITIVITY AND AEROSOL DRE

Abstract

Spaceborne lidar observations have great potential to provide accurate global estimates of the aerosol direct radiative effect (DRE) in both clear and cloudy conditions. However, comparisons between observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and multiple years of Atmospheric Radiation Measurement (ARM) program's ground-based Raman lidars (RL) show that CALIPSO does not detect all radiatively significant aerosol, i.e., aerosol that directly modifies the Earth's radiation budget. We estimated that using CALIPSO observations results in an underestimate of the magnitude of the global mean aerosol DRE by up to 54%. The ARM RL data sets along with NASA Langley airborne high spectral resolution lidar data from multiple field campaigns are used to derive the detection sensitivity required to accurately resolve the aerosol DRE. This shows that a lidar with a backscatter coefficient detection sensitivity of about 1–2 × 10-4 km-1 sr-1 at 532 nm would resolve all the aerosol needed to derive the DRE to within 1%.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. NASA Langley Research Center, Hampton, VA (United States)
  2. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States); NASA Langley Research Center, Hampton, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1533003
Grant/Contract Number:  
SC0010557; SC0014042
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 44; Journal Issue: 17; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Geology

Citation Formats

Thorsen, Tyler J., Ferrare, Richard A., Hostetler, Chris A., Vaughan, Mark A., and Fu, Qiang. The impact of lidar detection sensitivity on assessing aerosol direct radiative effects: LIDAR SENSITIVITY AND AEROSOL DRE. United States: N. p., 2017. Web. doi:10.1002/2017gl074521.
Thorsen, Tyler J., Ferrare, Richard A., Hostetler, Chris A., Vaughan, Mark A., & Fu, Qiang. The impact of lidar detection sensitivity on assessing aerosol direct radiative effects: LIDAR SENSITIVITY AND AEROSOL DRE. United States. https://doi.org/10.1002/2017gl074521
Thorsen, Tyler J., Ferrare, Richard A., Hostetler, Chris A., Vaughan, Mark A., and Fu, Qiang. Fri . "The impact of lidar detection sensitivity on assessing aerosol direct radiative effects: LIDAR SENSITIVITY AND AEROSOL DRE". United States. https://doi.org/10.1002/2017gl074521. https://www.osti.gov/servlets/purl/1533003.
@article{osti_1533003,
title = {The impact of lidar detection sensitivity on assessing aerosol direct radiative effects: LIDAR SENSITIVITY AND AEROSOL DRE},
author = {Thorsen, Tyler J. and Ferrare, Richard A. and Hostetler, Chris A. and Vaughan, Mark A. and Fu, Qiang},
abstractNote = {Spaceborne lidar observations have great potential to provide accurate global estimates of the aerosol direct radiative effect (DRE) in both clear and cloudy conditions. However, comparisons between observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and multiple years of Atmospheric Radiation Measurement (ARM) program's ground-based Raman lidars (RL) show that CALIPSO does not detect all radiatively significant aerosol, i.e., aerosol that directly modifies the Earth's radiation budget. We estimated that using CALIPSO observations results in an underestimate of the magnitude of the global mean aerosol DRE by up to 54%. The ARM RL data sets along with NASA Langley airborne high spectral resolution lidar data from multiple field campaigns are used to derive the detection sensitivity required to accurately resolve the aerosol DRE. This shows that a lidar with a backscatter coefficient detection sensitivity of about 1–2 × 10-4 km-1 sr-1 at 532 nm would resolve all the aerosol needed to derive the DRE to within 1%.},
doi = {10.1002/2017gl074521},
journal = {Geophysical Research Letters},
number = 17,
volume = 44,
place = {United States},
year = {Fri Sep 22 00:00:00 EDT 2017},
month = {Fri Sep 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An overview of the CATS level 1 processing algorithms and data products: CATS Data Products and Algorithms
journal, May 2016

  • Yorks, J. E.; McGill, M. J.; Palm, S. P.
  • Geophysical Research Letters, Vol. 43, Issue 9
  • DOI: 10.1002/2016GL068006

Aerosol Retrievals from CALIPSO Lidar Ocean Surface Returns
journal, December 2016

  • Venkata, Srikanth; Reagan, John
  • Remote Sensing, Vol. 8, Issue 12
  • DOI: 10.3390/rs8121006

The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description
journal, June 2009

  • Young, Stuart A.; Vaughan, Mark A.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 6
  • DOI: 10.1175/2008JTECHA1221.1

New approach to determine aerosol optical depth from combined CALIPSO and CloudSat ocean surface echoes: NEW APPROACH TO DETERMINE AOD
journal, May 2008

  • Josset, D.; Pelon, J.; Protat, A.
  • Geophysical Research Letters, Vol. 35, Issue 10
  • DOI: 10.1029/2008GL033442

Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview
journal, January 2007

  • Torres, Omar; Tanskanen, Aapo; Veihelmann, Ben
  • Journal of Geophysical Research, Vol. 112, Issue D24
  • DOI: 10.1029/2007JD008809

Macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidars: CALIPSO, MPL, AND RAMAN LIDAR CIRRUS PROPERTIES
journal, August 2013

  • Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 16
  • DOI: 10.1002/jgrd.50691

Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements
journal, January 2013

  • Waquet, F.; Cornet, C.; Deuzé, J. -L.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 4
  • DOI: 10.5194/amt-6-991-2013

CALIOP Calibration: Version 4.0 Algorithm Updates
journal, January 2016


NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation
journal, January 2009

  • Rogers, R. R.; Hair, J. W.; Hostetler, C. A.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-4811-2009

Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints
journal, January 2009


Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols
journal, January 1998

  • Goldsmith, J. E. M.; Blair, Forest H.; Bisson, Scott E.
  • Applied Optics, Vol. 37, Issue 21
  • DOI: 10.1364/AO.37.004979

Airborne High Spectral Resolution Lidar for profiling aerosol optical properties
journal, January 2008

  • Hair, Johnathan W.; Hostetler, Chris A.; Cook, Anthony L.
  • Applied Optics, Vol. 47, Issue 36
  • DOI: 10.1364/AO.47.006734

AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization
journal, October 1998


Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data
journal, January 2014

  • Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 2
  • DOI: 10.5194/amt-7-419-2014

A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements
journal, July 2013

  • Jethva, Hiren; Torres, Omar; Remer, Lorraine A.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, Issue 7
  • DOI: 10.1109/tgrs.2012.2230008

Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations
journal, January 2011

  • Dubovik, O.; Herman, M.; Holdak, A.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 5
  • DOI: 10.5194/amt-4-975-2011

A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation: DARF USING CALIPSO AND GCM
journal, May 2013

  • Oikawa, Eiji; Nakajima, Teruyuki; Inoue, Toshiro
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 9
  • DOI: 10.1002/jgrd.50227

A review of measurement-based assessments of the aerosol direct radiative effect and forcing
journal, January 2006

  • Yu, H.; Kaufman, Y. J.; Chin, M.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 3
  • DOI: 10.5194/acp-6-613-2006

EARLINET correlative measurements for CALIPSO: First intercomparison results
journal, January 2010

  • Pappalardo, Gelsomina; Wandinger, Ulla; Mona, Lucia
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012147

Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements
journal, October 2009

  • Vaughan, Mark A.; Powell, Kathleen A.; Winker, David M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 10
  • DOI: 10.1175/2009JTECHA1228.1

How much can the vertical distribution of black carbon affect its global direct radiative forcing?: HOW MUCH DO BC PROFILES AFFECT FORCING?
journal, October 2010

  • Zarzycki, Colin M.; Bond, Tami C.
  • Geophysical Research Letters, Vol. 37, Issue 20
  • DOI: 10.1029/2010GL044555

Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains
journal, January 2006

  • Ferrare, Richard; Turner, David; Clayton, Marian
  • Journal of Geophysical Research, Vol. 111, Issue D5
  • DOI: 10.1029/2005JD005836

Mesoscale Variations of Tropospheric Aerosols*
journal, January 2003


Raman Lidar (RL) Instrument Handbook
report, December 2022


The Cloud-Aerosol Transport System (CATS): a technology demonstration on the International Space Station
conference, September 2015

  • McGill, Matthew J.; Yorks, John E.; Scott, V. S.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.2190841

Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms
journal, November 2009

  • Winker, David M.; Vaughan, Mark A.; Omar, Ali
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 11
  • DOI: 10.1175/2009JTECHA1281.1

CALIPSO‐inferred aerosol direct radiative effects: Bias estimates using ground‐based Raman lidars
journal, December 2015

  • Thorsen, Tyler J.; Fu, Qiang
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 23
  • DOI: 10.1002/2015JD024095

Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples
journal, January 2012

  • Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 1
  • DOI: 10.5194/amt-5-73-2012

The CALIPSO Mission: A Global 3D View of Aerosols and Clouds
journal, September 2010

  • Winker, D. M.; Pelon, J.; Coakley, J. A.
  • Bulletin of the American Meteorological Society, Vol. 91, Issue 9
  • DOI: 10.1175/2010BAMS3009.1

An evaluation of CALIOP/CALIPSO's aerosol-above-cloud detection and retrieval capability over North America: CALIOP VERSUS HSRL AEROSOL-ABOVE-CLOUDS
journal, January 2014

  • Kacenelenbogen, M.; Redemann, J.; Vaughan, M. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 1
  • DOI: 10.1002/2013JD020178

Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination
journal, January 2007


The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light
journal, January 2010

  • Kokhanovsky, A. A.; Deuzé, J. L.; Diner, D. J.
  • Atmospheric Measurement Techniques, Vol. 3, Issue 4
  • DOI: 10.5194/amt-3-909-2010

Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data
journal, January 2014

  • Rogers, R. R.; Vaughan, M. A.; Hostetler, C. A.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 12
  • DOI: 10.5194/amt-7-4317-2014

Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing
journal, January 2008

  • Chand, D.; Anderson, T. L.; Wood, R.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2007JD009433

Information content and sensitivity of the 3 β  + 2 α lidar measurement system for aerosol microphysical retrievals
journal, January 2016

  • Burton, Sharon P.; Chemyakin, Eduard; Liu, Xu
  • Atmospheric Measurement Techniques, Vol. 9, Issue 11
  • DOI: 10.5194/amt-9-5555-2016

Quantifying the low bias of CALIPSO's column aerosol optical depth due to undetected aerosol layers: Undetected Aerosols in CALIPSO AOD
journal, January 2017

  • Kim, Man-Hae; Omar, Ali H.; Vaughan, Mark A.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 2
  • DOI: 10.1002/2016JD025797

Clouds and Aerosols
book, June 2014


Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry: AEROSOL DIRECT EFFECT OVER CLOUDS
journal, April 2012

  • de Graaf, M.; Tilstra, L. G.; Wang, P.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D7
  • DOI: 10.1029/2011JD017160

The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance
journal, July 2009

  • Liu, Zhaoyan; Vaughan, Mark; Winker, David
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 7
  • DOI: 10.1175/2009JTECHA1229.1

Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables
journal, January 2011

  • Lyapustin, Alexei; Martonchik, John; Wang, Yujie
  • Journal of Geophysical Research, Vol. 116, Issue D3
  • DOI: 10.1029/2010JD014985

University of Wisconsin High Spectral Resolution Lidar
journal, January 1991

  • Grund, Christian J.
  • Optical Engineering, Vol. 30, Issue 1
  • DOI: 10.1117/12.55766

Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm
journal, January 2011

  • Lyapustin, A.; Wang, Y.; Laszlo, I.
  • Journal of Geophysical Research, Vol. 116, Issue D3
  • DOI: 10.1029/2010JD014986

CALIPSO Lidar Description and Performance Assessment
journal, July 2009

  • Hunt, William H.; Winker, David M.; Vaughan, Mark A.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 7
  • DOI: 10.1175/2009JTECHA1223.1

Evaluation of CALIOP 532 nm aerosol optical depth over opaque water clouds
journal, January 2015


Works referencing / citing this record:

Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets
journal, January 2018

  • Zhao, Bin; Jiang, Jonathan H.; Diner, David J.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 15
  • DOI: 10.5194/acp-18-11247-2018

Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors
journal, January 2019

  • Kacenelenbogen, Meloë S.; Vaughan, Mark A.; Redemann, Jens
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 7
  • DOI: 10.5194/acp-19-4933-2019

The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm
journal, January 2018

  • Kim, Man-Hae; Omar, Ali H.; Tackett, Jason L.
  • Atmospheric Measurement Techniques, Vol. 11, Issue 11
  • DOI: 10.5194/amt-11-6107-2018

Novel aerosol extinction coefficients and lidar ratios over the ocean from CALIPSO–CloudSat: evaluation and global statistics
journal, January 2019

  • Painemal, David; Clayton, Marian; Ferrare, Richard
  • Atmospheric Measurement Techniques, Vol. 12, Issue 4
  • DOI: 10.5194/amt-12-2201-2019