DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of atomic kinetics on inverse bremsstrahlung heating and nonlocal thermal transport

Abstract

This paper describes a computational model that self-consistently combines physics of kinetic electrons and atomic processes in a single framework. The formulation consists of a kinetic Vlasov-Boltzmann-Fokker-Planck equation for free electrons and a non-Maxwellian collisional-radiative model for atomic state populations. We utilize this model to examine the influence of atomic kinetics on inverse bremsstrahlung (IB) heating and nonlocal thermal transport. Here, we show that atomic kinetics affects nonlinear IB absorption rates by further modifying the electron distribution in addition to laser heating. We also show that accurate modeling of nonlocal heat flow requires a self-consistent treatment of atomic kinetics, because the effective thermal conductivity strongly depends on the ionization balance of the plasma.

Authors:
 [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1532619
Alternate Identifier(s):
OSTI ID: 1546375
Report Number(s):
LLNL-JRNL-773648
Journal ID: ISSN 2470-0045; PLEEE8; 965657
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 100; Journal Issue: 1; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Le, Hai P., Sherlock, Mark, and Scott, Howard A.. Influence of atomic kinetics on inverse bremsstrahlung heating and nonlocal thermal transport. United States: N. p., 2019. Web. doi:10.1103/PhysRevE.100.013202.
Le, Hai P., Sherlock, Mark, & Scott, Howard A.. Influence of atomic kinetics on inverse bremsstrahlung heating and nonlocal thermal transport. United States. https://doi.org/10.1103/PhysRevE.100.013202
Le, Hai P., Sherlock, Mark, and Scott, Howard A.. Mon . "Influence of atomic kinetics on inverse bremsstrahlung heating and nonlocal thermal transport". United States. https://doi.org/10.1103/PhysRevE.100.013202. https://www.osti.gov/servlets/purl/1532619.
@article{osti_1532619,
title = {Influence of atomic kinetics on inverse bremsstrahlung heating and nonlocal thermal transport},
author = {Le, Hai P. and Sherlock, Mark and Scott, Howard A.},
abstractNote = {This paper describes a computational model that self-consistently combines physics of kinetic electrons and atomic processes in a single framework. The formulation consists of a kinetic Vlasov-Boltzmann-Fokker-Planck equation for free electrons and a non-Maxwellian collisional-radiative model for atomic state populations. We utilize this model to examine the influence of atomic kinetics on inverse bremsstrahlung (IB) heating and nonlocal thermal transport. Here, we show that atomic kinetics affects nonlinear IB absorption rates by further modifying the electron distribution in addition to laser heating. We also show that accurate modeling of nonlocal heat flow requires a self-consistent treatment of atomic kinetics, because the effective thermal conductivity strongly depends on the ionization balance of the plasma.},
doi = {10.1103/PhysRevE.100.013202},
journal = {Physical Review E},
number = 1,
volume = 100,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Simulation of IB heating and ionization of Al at ni = 1019 cm−3. The plasma is initially in LTE at 2 ev. (a) Electron temperature, (b) charge state densities, (c) ionization state and (d) IB absorption coefficient are shown as functions of time. In (d), solid line refersmore » to the absorption coefficient from the simulation, while the dashed line is calculated from Eq. (4) using α from the simulation.« less

Save / Share:

Works referenced in this record:

Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions
journal, March 1980


Time-Resolved Study of Nonlocal Electron Heat Transport in High Temperature Plasmas
journal, January 1998


Hot-electron influence on L -shell spectra of multicharged Kr ions generated in clusters irradiated by femtosecond laser pulses
journal, October 2002


Fast electron transport and ionization in a target irradiated by a high power laser
journal, July 2006

  • Robinson, A. P. L.; Bell, A. R.; Kingham, R. J.
  • Plasma Physics and Controlled Fusion, Vol. 48, Issue 8
  • DOI: 10.1088/0741-3335/48/8/002

Short-Time Electron Dynamics in Aluminum Excited by Femtosecond Extreme Ultraviolet Radiation
journal, October 2011


Nonequilibrium electron dynamics in materials driven by high-intensity x-ray pulses
journal, May 2013


Time-dependent Boltzmann kinetic model of x rays produced by ultrashort-pulse laser irradiation of argon clusters
journal, December 2003


Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated by a high-intensity X-ray laser
journal, September 2013

  • de la Varga, Alberto G.; Velarde, Pedro; de Gaufridy, François
  • High Energy Density Physics, Vol. 9, Issue 3
  • DOI: 10.1016/j.hedp.2013.05.010

Ultrafast nonequilibrium ion and electron dynamics of a neon plasma produced by an ultra-intense x-ray pulse
journal, June 2017


Two-Dimensional Nonlocal Electron Transport in Laser-Produced Plasmas
journal, November 1988


Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution
journal, November 2009


A review of Vlasov–Fokker–Planck numerical modeling of inertial confinement fusion plasma
journal, February 2012

  • Thomas, A. G. R.; Tzoufras, M.; Robinson, A. P. L.
  • Journal of Computational Physics, Vol. 231, Issue 3
  • DOI: 10.1016/j.jcp.2011.09.028

A multi-dimensional Vlasov-Fokker-Planck code for arbitrarily anisotropic high-energy-density plasmas
journal, May 2013

  • Tzoufras, M.; Tableman, A.; Tsung, F. S.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4801750

A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion
journal, August 2017

  • Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4986095

Fokker-Planck Calculations with Ionization Dynamics of Short-Pulse Laser-Solid Interactions
journal, February 1995


Advances in NLTE modeling for integrated simulations
journal, January 2010


Cretin—a radiative transfer capability for laboratory plasmas
journal, October 2001


FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements
journal, December 2005


Superconfiguration widths and their effects on atomic models
journal, March 2011

  • Hansen, Stephanie B.; Bauche, Jacques; Bauche-Arnoult, Claire
  • High Energy Density Physics, Vol. 7, Issue 1
  • DOI: 10.1016/j.hedp.2010.07.002

Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation
journal, February 2006

  • Bell, A. R.; Robinson, A. P. L.; Sherlock, M.
  • Plasma Physics and Controlled Fusion, Vol. 48, Issue 3
  • DOI: 10.1088/0741-3335/48/3/R01

Conservative algorithms for non-Maxwellian plasma kinetics
journal, December 2017

  • Le, Hai P.; Cambier, Jean-Luc
  • Physics of Plasmas, Vol. 24, Issue 12
  • DOI: 10.1063/1.4998242

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Progress towards a more predictive model for hohlraum radiation drive and symmetry
journal, May 2017

  • Jones, O. S.; Suter, L. J.; Scott, H. A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982693

Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas
journal, November 1988


Impact of non-Maxwellian electron velocity distribution functions on inferred plasma parameters in collective Thomson scattering
journal, February 2019

  • Milder, A. L.; Ivancic, S. T.; Palastro, J. P.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5085664

Elecron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas
journal, January 1981


Electron Heat Transport down Steep Temperature Gradients
journal, December 1982


Nonlocal Electron Heat Transport by Not Quite Maxwell-Boltzmann Distributions
journal, October 1986


Transport Phenomena in a Completely Ionized Gas
journal, March 1953


X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition
journal, July 2008

  • Dewald, E. L.; Rosen, M.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2943700

Short-Time Electron Dynamics in Aluminum Excited by Femtosecond Extreme Ultraviolet Radiation
text, January 2011

  • Medvedev, Nikita; Zastrau, U.; Foerster, Eckhart
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2017-06657

Works referencing / citing this record:

Investigation of picosecond thermodynamics in a laser-produced plasma using Thomson scattering
journal, October 2019

  • Davies, A. S.; Haberberger, D.; Katz, J.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 1
  • DOI: 10.1088/1361-6587/ab49db

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.