skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coherent diffractive imaging of microtubules using an X-ray laser

Abstract

X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.

Authors:
 [1]; ORCiD logo [1];  [1];  [1];  [1];  [2];  [3];  [4];  [1];  [5]; ORCiD logo [6];  [3];  [3];  [3]; ORCiD logo [3];  [3];  [3];  [3];  [7];  [3] more »;  [3];  [7];  [5];  [3];  [5];  [5];  [8]; ORCiD logo [9];  [2];  [10];  [5];  [11]; ORCiD logo [1] « less
  1. Univ. of Gothenburg, Gothenburg (Sweden)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  4. AstraZeneca R&D, Molndal (Sweden)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany)
  7. A*STAR (Agency for Science, Technology and Research) (Singapore)
  8. National Univ. of Singapore (Singapore)
  9. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); Univ. of Hamburg, Hamburg (Germany)
  10. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  11. A*STAR (Agency for Science, Technology and Research) (Singapore); National Univ. of Singapore (Singapore); Okayama Univ., Okayama (Japan)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1532435
Grant/Contract Number:  
AC02-76SF00515; 2015-00560; KAW 2012.0284; KAW 2012.0275; KAW 2014.0275
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English

Citation Formats

Brändén, Gisela, Hammarin, Greger, Harimoorthy, Rajiv, Johansson, Alexander, Arnlund, David, Malmerberg, Erik, Barty, Anton, Tångefjord, Stefan, Berntsen, Peter, DePonte, Daniel P., Seuring, Carolin, White, Thomas A., Stellato, Francesco, Bean, Richard, Beyerlein, Kenneth R., Chavas, Leonard M. G., Fleckenstein, Holger, Gati, Cornelius, Ghoshdastider, Umesh, Gumprecht, Lars, Oberthür, Dominik, Popp, David, Seibert, Marvin, Tilp, Thomas, Messerschmidt, Marc, Williams, Garth J., Loh, N. Duane, Chapman, Henry N., Zwart, Peter, Liang, Mengning, Boutet, Sébastien, Robinson, Robert C., and Neutze, Richard. Coherent diffractive imaging of microtubules using an X-ray laser. United States: N. p., 2019. Web. doi:10.1038/s41467-019-10448-x.
Brändén, Gisela, Hammarin, Greger, Harimoorthy, Rajiv, Johansson, Alexander, Arnlund, David, Malmerberg, Erik, Barty, Anton, Tångefjord, Stefan, Berntsen, Peter, DePonte, Daniel P., Seuring, Carolin, White, Thomas A., Stellato, Francesco, Bean, Richard, Beyerlein, Kenneth R., Chavas, Leonard M. G., Fleckenstein, Holger, Gati, Cornelius, Ghoshdastider, Umesh, Gumprecht, Lars, Oberthür, Dominik, Popp, David, Seibert, Marvin, Tilp, Thomas, Messerschmidt, Marc, Williams, Garth J., Loh, N. Duane, Chapman, Henry N., Zwart, Peter, Liang, Mengning, Boutet, Sébastien, Robinson, Robert C., & Neutze, Richard. Coherent diffractive imaging of microtubules using an X-ray laser. United States. doi:10.1038/s41467-019-10448-x.
Brändén, Gisela, Hammarin, Greger, Harimoorthy, Rajiv, Johansson, Alexander, Arnlund, David, Malmerberg, Erik, Barty, Anton, Tångefjord, Stefan, Berntsen, Peter, DePonte, Daniel P., Seuring, Carolin, White, Thomas A., Stellato, Francesco, Bean, Richard, Beyerlein, Kenneth R., Chavas, Leonard M. G., Fleckenstein, Holger, Gati, Cornelius, Ghoshdastider, Umesh, Gumprecht, Lars, Oberthür, Dominik, Popp, David, Seibert, Marvin, Tilp, Thomas, Messerschmidt, Marc, Williams, Garth J., Loh, N. Duane, Chapman, Henry N., Zwart, Peter, Liang, Mengning, Boutet, Sébastien, Robinson, Robert C., and Neutze, Richard. Thu . "Coherent diffractive imaging of microtubules using an X-ray laser". United States. doi:10.1038/s41467-019-10448-x. https://www.osti.gov/servlets/purl/1532435.
@article{osti_1532435,
title = {Coherent diffractive imaging of microtubules using an X-ray laser},
author = {Brändén, Gisela and Hammarin, Greger and Harimoorthy, Rajiv and Johansson, Alexander and Arnlund, David and Malmerberg, Erik and Barty, Anton and Tångefjord, Stefan and Berntsen, Peter and DePonte, Daniel P. and Seuring, Carolin and White, Thomas A. and Stellato, Francesco and Bean, Richard and Beyerlein, Kenneth R. and Chavas, Leonard M. G. and Fleckenstein, Holger and Gati, Cornelius and Ghoshdastider, Umesh and Gumprecht, Lars and Oberthür, Dominik and Popp, David and Seibert, Marvin and Tilp, Thomas and Messerschmidt, Marc and Williams, Garth J. and Loh, N. Duane and Chapman, Henry N. and Zwart, Peter and Liang, Mengning and Boutet, Sébastien and Robinson, Robert C. and Neutze, Richard},
abstractNote = {X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.},
doi = {10.1038/s41467-019-10448-x},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene
journal, May 2018

  • Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria
  • Nature Communications, Vol. 9, Article No. 1836
  • DOI: 10.1038/s41467-018-04116-9

Gas dynamic virtual nozzle for generation of microscopic droplet streams
journal, September 2008

  • DePonte, D. P.; Weierstall, U.; Schmidt, K.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 19, Article No. 195505
  • DOI: 10.1088/0022-3727/41/19/195505

Reconstruction of an object from the modulus of its Fourier transform
journal, January 1978