DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials

Abstract

In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. As a result, this reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [2];  [7]; ORCiD logo [8];  [8];  [9];  [10]; ORCiD logo [11];  [11];  [12]; ORCiD logo [3]; ORCiD logo [8]; ORCiD logo [13];  [14]; ORCiD logo [10] more »; ORCiD logo [7]; ORCiD logo [3]; ORCiD logo [15]; ORCiD logo [2] « less
  1. Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA., Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA., European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany.
  2. Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany.
  3. Institut für Theoretische Festkörperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, Germany.
  4. Instituto de Optica, CSIC, C/Serrano 121, 28006 Madrid, Spain.
  5. I. Physikalisches Institut and JARA-FIT, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany.
  6. Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany., Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.
  7. Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA., Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA.
  8. Department of Physics, Lund University, Professorsgatan 1, 223 62 Lund, Sweden.
  9. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
  10. Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
  11. Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA.
  12. Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA., Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland.
  13. Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA., Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA., Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
  14. Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France.
  15. I. Physikalisches Institut and JARA-FIT, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany., PGI 10 (Green IT), Forschungszentrum Jülich, 52428 Jülich, Germany.
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); German Research Foundation (DFG); European Union (EU); RWTH Aachen University; Ministry of Science and Innovation (MICINN); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1527069
Alternate Identifier(s):
OSTI ID: 1532412; OSTI ID: 1860898
Report Number(s):
LLNL-JRNL-773308
Journal ID: ISSN 0036-8075; /sci/364/6445/1062.atom
Grant/Contract Number:  
AC02-76SF00515; AC52-07NA27344; SFB 616 ”Energy Dissipation at Surfaces”; SFB 1242 “Non-Equilibrium Dynamics of Condensed Matter in the Time Domain”; So408/9-1; SFB 917 ”Nanoswitches”; Ma-5339/2-1; JARA0150 and JARA0183; 278162697; 280555; TEC2017-82464-R
Resource Type:
Published Article
Journal Name:
Science
Additional Journal Information:
Journal Name: Science Journal Volume: 364 Journal Issue: 6445; Journal ID: ISSN 0036-8075
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Physics - Condensed matter physics

Citation Formats

Zalden, Peter, Quirin, Florian, Schumacher, Mathias, Siegel, Jan, Wei, Shuai, Koc, Azize, Nicoul, Matthieu, Trigo, Mariano, Andreasson, Pererik, Enquist, Henrik, Shu, Michael J., Pardini, Tommaso, Chollet, Matthieu, Zhu, Diling, Lemke, Henrik, Ronneberger, Ider, Larsson, Jörgen, Lindenberg, Aaron M., Fischer, Henry E., Hau-Riege, Stefan, Reis, David A., Mazzarello, Riccardo, Wuttig, Matthias, and Sokolowski-Tinten, Klaus. Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. United States: N. p., 2019. Web. doi:10.1126/science.aaw1773.
Zalden, Peter, Quirin, Florian, Schumacher, Mathias, Siegel, Jan, Wei, Shuai, Koc, Azize, Nicoul, Matthieu, Trigo, Mariano, Andreasson, Pererik, Enquist, Henrik, Shu, Michael J., Pardini, Tommaso, Chollet, Matthieu, Zhu, Diling, Lemke, Henrik, Ronneberger, Ider, Larsson, Jörgen, Lindenberg, Aaron M., Fischer, Henry E., Hau-Riege, Stefan, Reis, David A., Mazzarello, Riccardo, Wuttig, Matthias, & Sokolowski-Tinten, Klaus. Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. United States. https://doi.org/10.1126/science.aaw1773
Zalden, Peter, Quirin, Florian, Schumacher, Mathias, Siegel, Jan, Wei, Shuai, Koc, Azize, Nicoul, Matthieu, Trigo, Mariano, Andreasson, Pererik, Enquist, Henrik, Shu, Michael J., Pardini, Tommaso, Chollet, Matthieu, Zhu, Diling, Lemke, Henrik, Ronneberger, Ider, Larsson, Jörgen, Lindenberg, Aaron M., Fischer, Henry E., Hau-Riege, Stefan, Reis, David A., Mazzarello, Riccardo, Wuttig, Matthias, and Sokolowski-Tinten, Klaus. Thu . "Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials". United States. https://doi.org/10.1126/science.aaw1773.
@article{osti_1527069,
title = {Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials},
author = {Zalden, Peter and Quirin, Florian and Schumacher, Mathias and Siegel, Jan and Wei, Shuai and Koc, Azize and Nicoul, Matthieu and Trigo, Mariano and Andreasson, Pererik and Enquist, Henrik and Shu, Michael J. and Pardini, Tommaso and Chollet, Matthieu and Zhu, Diling and Lemke, Henrik and Ronneberger, Ider and Larsson, Jörgen and Lindenberg, Aaron M. and Fischer, Henry E. and Hau-Riege, Stefan and Reis, David A. and Mazzarello, Riccardo and Wuttig, Matthias and Sokolowski-Tinten, Klaus},
abstractNote = {In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. As a result, this reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.},
doi = {10.1126/science.aaw1773},
journal = {Science},
number = 6445,
volume = 364,
place = {United States},
year = {Thu Jun 13 00:00:00 EDT 2019},
month = {Thu Jun 13 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1126/science.aaw1773

Citation Metrics:
Cited by: 101 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Viscosity of liquid Ag–In–Sb–Te: Evidence of a fragile-to-strong crossover
journal, May 2016

  • Orava, J.; Weber, H.; Kaban, I.
  • The Journal of Chemical Physics, Vol. 144, Issue 19
  • DOI: 10.1063/1.4949526

Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys
journal, June 2004

  • Kalb, J.; Spaepen, F.; Wuttig, M.
  • Applied Physics Letters, Vol. 84, Issue 25
  • DOI: 10.1063/1.1764591

Metastable liquid–liquid transition in a molecular model of water
journal, June 2014

  • Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13405

Optical Properties of Silicon Nitride
journal, January 1973

  • Philipp, Herbert R.
  • Journal of The Electrochemical Society, Vol. 120, Issue 2
  • DOI: 10.1149/1.2403440

Phase-change materials for rewriteable data storage
journal, November 2007

  • Wuttig, Matthias; Yamada, Noboru
  • Nature Materials, Vol. 6, Issue 11
  • DOI: 10.1038/nmat2009

Thermal Boundary Resistance Measurements for Phase-Change Memory Devices
journal, January 2010


Experimental and ab initio molecular dynamics study of the structure and physical properties of liquid GeTe
journal, August 2017


Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3ω-Völklein method
journal, September 2013

  • Ftouni, Hossein; Tainoff, Dimitri; Richard, Jacques
  • Review of Scientific Instruments, Vol. 84, Issue 9
  • DOI: 10.1063/1.4821501

Phase behaviour of metastable water
journal, November 1992

  • Poole, Peter H.; Sciortino, Francesco; Essmann, Ulrich
  • Nature, Vol. 360, Issue 6402
  • DOI: 10.1038/360324a0

Incipient Metals: Functional Materials with a Unique Bonding Mechanism
journal, October 2018

  • Wuttig, Matthias; Deringer, Volker L.; Gonze, Xavier
  • Advanced Materials, Vol. 30, Issue 51
  • DOI: 10.1002/adma.201803777

Unraveling Crystal Growth in GeSb Phase-Change Films in between the Glass-Transition and Melting Temperatures
journal, May 2014

  • Eising, Gert; Van Damme, Tobias; Kooi, Bart J.
  • Crystal Growth & Design, Vol. 14, Issue 7
  • DOI: 10.1021/cg500347g

Neutron and x-ray diffraction studies of liquids and glasses
journal, November 2005

  • Fischer, Henry E.; Barnes, Adrian C.; Salmon, Philip S.
  • Reports on Progress in Physics, Vol. 69, Issue 1
  • DOI: 10.1088/0034-4885/69/1/R05

Fragile-to-Strong Crossover in Supercooled Liquid Ag-In-Sb-Te Studied by Ultrafast Calorimetry
journal, July 2015

  • Orava, Jiri; Hewak, Daniel W.; Greer, A. Lindsay
  • Advanced Functional Materials, Vol. 25, Issue 30
  • DOI: 10.1002/adfm.201501607

A Quantum‐Mechanical Map for Bonding and Properties in Solids
journal, September 2018

  • Raty, Jean‐Yves; Schumacher, Mathias; Golub, Pavlo
  • Advanced Materials, Vol. 31, Issue 3
  • DOI: 10.1002/adma.201806280

Aging mechanisms in amorphous phase-change materials
journal, June 2015

  • Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8467

Determination of specific heat with a simple inverse approach
journal, May 2003


How fragility makes phase-change data storage robust: insights from ab initio simulations
journal, October 2014

  • Zhang, Wei; Ronneberger, Ider; Zalden, Peter
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06529

Ultrafast sub-threshold photo-induced response in crystalline and amorphous GeSbTe thin films
journal, May 2013

  • Shu, M. J.; Chatzakis, I.; Kuo, Y.
  • Applied Physics Letters, Vol. 102, Issue 20
  • DOI: 10.1063/1.4807731

Ultrafast terahertz-induced response of GeSbTe phase-change materials
journal, June 2014

  • Shu, Michael J.; Zalden, Peter; Chen, Frank
  • Applied Physics Letters, Vol. 104, Issue 25
  • DOI: 10.1063/1.4884816

Structural evolution on medium-range-order during the fragile-strong transition in Ge 15 Te 85
journal, May 2017


A theory of the electrical properties of liquid metals: III. the resistivity of binary alloys
journal, January 1965


Relationship between Peierls distortion and medium-range order in Liquid Group-V elements and liquid Group-IV-VI compounds
journal, March 2010


Characteristic Ordering in Liquid Phase-Change Materials
journal, December 2008

  • Steimer, Christoph; Coulet, Vanessa; Welnic, Wojciech
  • Advanced Materials, Vol. 20, Issue 23
  • DOI: 10.1002/adma.200700016

Simultaneous calorimetric and quick-EXAFS measurements to study the crystallization process in phase-change materials
journal, July 2012

  • Zalden, Peter; Aquilanti, Giuliana; Prestipino, Carmello
  • Journal of Synchrotron Radiation, Vol. 19, Issue 5
  • DOI: 10.1107/S090904951202612X

Ultrafast Characterization of Phase-Change Material Crystallization Properties in the Melt-Quenched Amorphous Phase
journal, May 2014

  • Jeyasingh, Rakesh; Fong, Scott W.; Lee, Jaeho
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500940z

Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials
journal, March 2016


Simulations clarify when supercooled water freezes into glassy structures
journal, June 2014


Relationship between structural order and the anomalies of liquid water
journal, January 2001

  • Errington, Jeffrey R.; Debenedetti, Pablo G.
  • Nature, Vol. 409, Issue 6818
  • DOI: 10.1038/35053024

Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses
journal, November 1999

  • Siegel, J.; Afonso, C. N.; Solis, J.
  • Applied Physics Letters, Vol. 75, Issue 20
  • DOI: 10.1063/1.125244

Breaking the Speed Limits of Phase-Change Memory
journal, June 2012


Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica
journal, August 2001

  • Saika-Voivod, Ivan; Poole, Peter H.; Sciortino, Francesco
  • Nature, Vol. 412, Issue 6846
  • DOI: 10.1038/35087524

Resonant bonding in crystalline phase-change materials
journal, July 2008

  • Shportko, Kostiantyn; Kremers, Stephan; Woda, Michael
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2226

Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing
journal, November 2017


Intensity of diffracted intensities
book, October 2006


D4c: A very high precision diffractometer for disordered materials
journal, December 2002

  • Fischer, H. E.; Cuello, G. J.; Palleau, P.
  • Applied Physics A: Materials Science & Processing, Vol. 74, Issue 0
  • DOI: 10.1007/s003390101087

Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes
journal, March 2011


Specific heat and thermal conductivity of low-stress amorphous Si–N membranes
journal, January 2004


Localized States in Disordered Lattices
journal, January 1967


Pressure-induced suppression of the Peierls distortion of liquid As and Ge X ( X = S , Se , Te )
journal, August 2009


Liquid–liquid critical point in supercooled silicon
journal, May 2011

  • Vasisht, Vishwas V.; Saw, Shibu; Sastry, Srikanth
  • Nature Physics, Vol. 7, Issue 7
  • DOI: 10.1038/nphys1993

A thermodynamic evaluation of the Ge-In, Ge-Pb, Ge-Sb, Ge-Tl and Ge-Zn systems
journal, December 1989


Water II is a "strong" liquid
journal, June 1993


The World's Technological Capacity to Store, Communicate, and Compute Information
journal, February 2011


Phase change alloy viscosities down to T g using Adam-Gibbs-equation fittings to excess entropy data: A fragile-to-strong transition
journal, July 2015

  • Wei, Shuai; Lucas, Pierre; Angell, C. Austen
  • Journal of Applied Physics, Vol. 118, Issue 3
  • DOI: 10.1063/1.4926791

Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage
journal, March 2003

  • Kalb, J.; Spaepen, F.; Wuttig, M.
  • Journal of Applied Physics, Vol. 93, Issue 5
  • DOI: 10.1063/1.1540227

Supercooled and Glassy Water
journal, June 2003

  • Debenedetti, Pablo G.; Stanley, H. Eugene
  • Physics Today, Vol. 56, Issue 6
  • DOI: 10.1063/1.1595053

Measurement of crystal growth velocity in a melt-quenched phase-change material
journal, August 2013

  • Salinga, Martin; Carria, Egidio; Kaldenbach, Andreas
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3371

Heat of structural transformation at the semiconductor-metal transition in As2Te3 liquid
journal, May 1996

  • Tver'yanovich, Yu. S.; Ushakov, V. M.; Tverjanovich, A.
  • Journal of Non-Crystalline Solids, Vol. 197, Issue 2-3
  • DOI: 10.1016/0022-3093(96)00198-6

Mechanical stresses upon crystallization in phase change materials
journal, November 2001

  • Pedersen, T. P. Leervad; Kalb, J.; Njoroge, W. K.
  • Applied Physics Letters, Vol. 79, Issue 22
  • DOI: 10.1063/1.1415419

Time-domain separation of optical properties from structural transitions in resonantly bonded materials
journal, July 2015

  • Waldecker, Lutz; Miller, Timothy A.; Rudé, Miquel
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4359

Atomic structure of amorphous and crystallized Ge15Sb85
journal, May 2010

  • Zalden, Peter; Bichara, Christophe; van Eijk, Julia
  • Journal of Applied Physics, Vol. 107, Issue 10
  • DOI: 10.1063/1.3380667

From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials
journal, January 2011

  • Matsunaga, Toshiyuki; Akola, Jaakko; Kohara, Shinji
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2931

Effect of composition on the properties of Te–Ge thick films deposited by co-thermal evaporation
journal, September 2010


Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials
journal, October 2007

  • Caravati, S.; Bernasconi, M.; Kühne, T. D.
  • Applied Physics Letters, Vol. 91, Issue 17
  • DOI: 10.1063/1.2801626

How Supercooled Liquid Phase-Change Materials Crystallize: Snapshots after Femtosecond Optical Excitation
journal, August 2015


Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source
journal, April 2015

  • Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515004488

X-ray diffraction measurements for liquid As2Se3 up to the semiconductor-metal transition region
journal, November 1992

  • Hosokawa, Shinya; Sakaguchi, Yoshifumi; Tamura, Kozaburo
  • Journal of Non-Crystalline Solids, Vol. 150, Issue 1-3
  • DOI: 10.1016/0022-3093(92)90090-7

Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3ω Method
journal, August 2008

  • Jain, Ankur; Goodson, Kenneth E.
  • Journal of Heat Transfer, Vol. 130, Issue 10
  • DOI: 10.1115/1.2945904

The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II
journal, June 2013

  • Limmer, David T.; Chandler, David
  • The Journal of Chemical Physics, Vol. 138, Issue 21
  • DOI: 10.1063/1.4807479

Investigation of the structure of molten Ge15Te85 in dependence on temperature
journal, August 1985


Phase Change Memory
journal, December 2010


Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material
journal, November 2018


Maxima in the thermodynamic response and correlation functions of deeply supercooled water
journal, December 2017


Simple technique for measurements of pulsed Gaussian-beam spot sizes
journal, January 1982


Under what conditions can a glass be formed?
journal, September 1969


Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state
journal, June 2016

  • Schumacher, Mathias; Weber, Hans; Jóvári, Pál
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27434

Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry
journal, March 2012

  • Orava, J.; Greer, A. L.; Gholipour, B.
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3275

Formation of Glasses from Liquids and Biopolymers
journal, March 1995


Works referencing / citing this record:

Understanding CrGeTe 3 : an abnormal phase change material with inverse resistance and density contrast
journal, January 2019

  • Xu, Meng; Guo, Yanrong; Yu, Zhenhai
  • Journal of Materials Chemistry C, Vol. 7, Issue 29
  • DOI: 10.1039/c9tc02963j

Memory materials and devices: From concept to application
journal, January 2020

  • Zhang, Zhenhan; Wang, Zongwei; Shi, Tuo
  • InfoMat, Vol. 2, Issue 2
  • DOI: 10.1002/inf2.12077

Constructing reliable PCM and OTS devices with an interfacial carbon layer
journal, October 2019

  • Ren, Kun; Duan, Xing; Xiong, Qinqin
  • Journal of Materials Science: Materials in Electronics, Vol. 30, Issue 22
  • DOI: 10.1007/s10854-019-02373-y

Resistive switching materials for information processing
journal, January 2020


Structural and electronic properties of liquid, amorphous, and supercooled liquid phases of In 2 Te 5 from first-principles
journal, October 2019

  • Dragoni, Daniele; Bernasconi, Marco
  • The Journal of Chemical Physics, Vol. 151, Issue 13
  • DOI: 10.1063/1.5117781

Temperature dependence of structural, dynamical, and electronic properties of amorphous Bi 2 Te 3 : an ab initio study
journal, September 2019


Uncovering β-relaxations in amorphous phase-change materials
journal, January 2020


Phase-change heterostructure enables ultralow noise and drift for memory operation
journal, August 2019