DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrospray sample injection for single-particle imaging with x-ray lasers

Abstract

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [4];  [5]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [4]; ORCiD logo [4];  [4]; ORCiD logo [4];  [4]; ORCiD logo [4];  [4];  [7]; ORCiD logo [8] more »; ORCiD logo [9]; ORCiD logo [10];  [11];  [12];  [11]; ORCiD logo [13];  [4];  [11];  [11]; ORCiD logo [11]; ORCiD logo [14];  [15];  [11];  [16];  [11]; ORCiD logo [4]; ORCiD logo [17]; ORCiD logo [18]; ORCiD logo [19] « less
  1. Uppsala Univ., Uppsala (Sweden); European XFEL GmbH, Schenefeld (Germany)
  2. Uppsala Univ., Uppsala (Sweden); Oxford Univ., Oxford (United Kingdom); Refeyn Ltd., Oxford (United Kingdom)
  3. Uppsala Univ., Uppsala (Sweden); National Univ. of Singapore (Singapore)
  4. Uppsala Univ., Uppsala (Sweden)
  5. Uppsala Univ., Uppsala (Sweden); KTH Royal Institute of Technology, Stockholm (Sweden)
  6. La Trobe Univ., Melbourne, VIC (Australia)
  7. Academy of Sciences of the Czech Republic, Prague (Czech Republic)
  8. Osaka Univ., Osaka (Japan); Hiroshima Univ., Hiroshima (Japan)
  9. Uppsala Univ., Uppsala (Sweden); Utrecht Univ., Utrecht (Netherlands)
  10. National Univ. of Singapore (Singapore)
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  12. Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)
  13. SLAC National Accelerator Lab., Menlo Park, CA (United States); Leibniz Univ. Hannover, Hannover (Germany)
  14. Argonne National Lab. (ANL), Argonne, IL (United States)
  15. Technische Univ. Berlin, Berlin (Germany)
  16. SLAC National Accelerator Lab., Menlo Park, CA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
  17. Academy of Sciences of the Czech Republic, Prague (Czech Republic); Chalmers Univ. of Technology, Gothenburg (Sweden)
  18. Uppsala Univ., Uppsala (Sweden); Academy of Sciences of the Czech Republic; Prague (Czech Republic)
  19. Uppsala Univ., Uppsala (Sweden); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
Swedish Foundation for Strategic Research (SSF); USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; Swedish Research Council (SRC); Knut and Alice Wallenberg Foundation; European Research Council (ERC); European Regional Development Fund (ERDF); Wellcome Trust; Volkswagen Foundation
OSTI Identifier:
1532400
Alternate Identifier(s):
OSTI ID: 1559029; OSTI ID: 1571429
Report Number(s):
BNL-212202-2019-JAAM
Journal ID: ISSN 2375-2548
Grant/Contract Number:  
AC02-76SF00515; AC02-06CH11357; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 5; Journal Issue: 5; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Bielecki, Johan, Hantke, Max F., Daurer, Benedikt J., Reddy, Hemanth K. N., Hasse, Dirk, Larsson, Daniel S. D., Gunn, Laura H., Svenda, Martin, Munke, Anna, Sellberg, Jonas A., Flueckiger, Leonie, Pietrini, Alberto, Nettelblad, Carl, Lundholm, Ida, Carlsson, Gunilla, Okamoto, Kenta, Timneanu, Nicusor, Westphal, Daniel, Kulyk, Olena, Higashiura, Akifumi, van der Schot, Gijs, Loh, Ne-Te Duane, Wysong, Taylor E., Bostedt, Christoph, Gorkhover, Tais, Iwan, Bianca, Seibert, M. Marvin, Osipov, Timur, Walter, Peter, Hart, Philip, Bucher, Maximilian, Ulmer, Anatoli, Ray, Dipanwita, Carini, Gabriella, Ferguson, Ken R., Andersson, Inger, Andreasson, Jakob, Hajdu, Janos, and Maia, Filipe R. N. C. Electrospray sample injection for single-particle imaging with x-ray lasers. United States: N. p., 2019. Web. doi:10.1126/sciadv.aav8801.
Bielecki, Johan, Hantke, Max F., Daurer, Benedikt J., Reddy, Hemanth K. N., Hasse, Dirk, Larsson, Daniel S. D., Gunn, Laura H., Svenda, Martin, Munke, Anna, Sellberg, Jonas A., Flueckiger, Leonie, Pietrini, Alberto, Nettelblad, Carl, Lundholm, Ida, Carlsson, Gunilla, Okamoto, Kenta, Timneanu, Nicusor, Westphal, Daniel, Kulyk, Olena, Higashiura, Akifumi, van der Schot, Gijs, Loh, Ne-Te Duane, Wysong, Taylor E., Bostedt, Christoph, Gorkhover, Tais, Iwan, Bianca, Seibert, M. Marvin, Osipov, Timur, Walter, Peter, Hart, Philip, Bucher, Maximilian, Ulmer, Anatoli, Ray, Dipanwita, Carini, Gabriella, Ferguson, Ken R., Andersson, Inger, Andreasson, Jakob, Hajdu, Janos, & Maia, Filipe R. N. C. Electrospray sample injection for single-particle imaging with x-ray lasers. United States. https://doi.org/10.1126/sciadv.aav8801
Bielecki, Johan, Hantke, Max F., Daurer, Benedikt J., Reddy, Hemanth K. N., Hasse, Dirk, Larsson, Daniel S. D., Gunn, Laura H., Svenda, Martin, Munke, Anna, Sellberg, Jonas A., Flueckiger, Leonie, Pietrini, Alberto, Nettelblad, Carl, Lundholm, Ida, Carlsson, Gunilla, Okamoto, Kenta, Timneanu, Nicusor, Westphal, Daniel, Kulyk, Olena, Higashiura, Akifumi, van der Schot, Gijs, Loh, Ne-Te Duane, Wysong, Taylor E., Bostedt, Christoph, Gorkhover, Tais, Iwan, Bianca, Seibert, M. Marvin, Osipov, Timur, Walter, Peter, Hart, Philip, Bucher, Maximilian, Ulmer, Anatoli, Ray, Dipanwita, Carini, Gabriella, Ferguson, Ken R., Andersson, Inger, Andreasson, Jakob, Hajdu, Janos, and Maia, Filipe R. N. C. Fri . "Electrospray sample injection for single-particle imaging with x-ray lasers". United States. https://doi.org/10.1126/sciadv.aav8801. https://www.osti.gov/servlets/purl/1532400.
@article{osti_1532400,
title = {Electrospray sample injection for single-particle imaging with x-ray lasers},
author = {Bielecki, Johan and Hantke, Max F. and Daurer, Benedikt J. and Reddy, Hemanth K. N. and Hasse, Dirk and Larsson, Daniel S. D. and Gunn, Laura H. and Svenda, Martin and Munke, Anna and Sellberg, Jonas A. and Flueckiger, Leonie and Pietrini, Alberto and Nettelblad, Carl and Lundholm, Ida and Carlsson, Gunilla and Okamoto, Kenta and Timneanu, Nicusor and Westphal, Daniel and Kulyk, Olena and Higashiura, Akifumi and van der Schot, Gijs and Loh, Ne-Te Duane and Wysong, Taylor E. and Bostedt, Christoph and Gorkhover, Tais and Iwan, Bianca and Seibert, M. Marvin and Osipov, Timur and Walter, Peter and Hart, Philip and Bucher, Maximilian and Ulmer, Anatoli and Ray, Dipanwita and Carini, Gabriella and Ferguson, Ken R. and Andersson, Inger and Andreasson, Jakob and Hajdu, Janos and Maia, Filipe R. N. C.},
abstractNote = {The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.},
doi = {10.1126/sciadv.aav8801},
journal = {Science Advances},
number = 5,
volume = 5,
place = {United States},
year = {Fri May 03 00:00:00 EDT 2019},
month = {Fri May 03 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: ES aerosol injector. (A) Design of the ES aerosol injector. In the aerosolization chamber, the ES nebulizer generates droplets that are neutralized with a 210Po alpha emitter. The ES nebulizer is operated in an atmosphere of N2 and CO2 at 1 bar. The aerosol is transported through twomore » nozzle-skimmer assemblies, where excess gas is pumped away. At a reduced pressure of 1 to 10 mbar, the aerosol enters the aerosol lens stack, which focuses it to a narrow particle beam entering the experimental chamber, which is held at a pressure of 10−6 to 10−5 mbar to match requirements for XFEL imaging. (B) Size distributions of initial droplets for ES (green) and GDVN (blue) aerosols determined by RSM (top) and XFEL diffraction (bottom). The results of the two sizing methods are comparable within the limits of reproducibility expected for the manually manufactured nozzles and variations in operational parameters, such as pressures, voltage, and flow rate. (C) RSM size distributions of aerosolized particles from carboxysome sample (purple) and from its buffer solution (red). Data collected on electrosprayed particles are shown in the first panel (median, 95 nm; FWHM, 14 nm), and data collected on particles injected by GDVN at two different pressure configurations (Table 2) are shown in the second (median, 102 nm; FWHM, 17 nm) and third panels (median, 105 nm; FWHM, 17 nm). Dashed lines indicate the detection limit.« less

Save / Share:

Works referenced in this record:

Single mimivirus particles intercepted and imaged with an X-ray laser
journal, February 2011

  • Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.
  • Nature, Vol. 470, Issue 7332
  • DOI: 10.1038/nature09748

Electrospray ion source. Another variation on the free-jet theme
journal, September 1984

  • Yamashita, Masamichi; Fenn, John B.
  • The Journal of Physical Chemistry, Vol. 88, Issue 20
  • DOI: 10.1021/j150664a002

Progress in overexpanded supersonic jets and skimmed molecular beams in free-jet zones of silence
journal, September 1984


The LAMP instrument at the Linac Coherent Light Source free-electron laser
text, January 2018

  • Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-00069

Tomographic Phase Microscopy: Quantitative 3D-Mapping of Refractive Index in Live Cells
journal, March 2008


Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens
journal, July 1999

  • Miao, Jianwei; Charalambous, Pambos; Kirz, Janos
  • Nature, Vol. 400, Issue 6742
  • DOI: 10.1038/22498

Imaging single cells in a beam of live cyanobacteria with an X-ray laser
journal, February 2015

  • van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6704

Beyond crystallography: Diffractive imaging using coherent x-ray light sources
journal, April 2015


Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range
journal, September 1995

  • Chen, Da-Ren; Pui, David Y. H.; Kaufman, Stanley L.
  • Journal of Aerosol Science, Vol. 26, Issue 6, p. 963-977
  • DOI: 10.1016/0021-8502(95)00027-A

Linac Coherent Light Source data analysis using psana
journal, March 2016

  • Damiani, D.; Dubrovin, M.; Gaponenko, I.
  • Journal of Applied Crystallography, Vol. 49, Issue 2
  • DOI: 10.1107/S1600576716004349

Electrospray Time-of-Flight Mass Spectrometry of the Intact MS2 Virus Capsid
journal, April 2000

  • Tito, Mark A.; Tars, Kaspar; Valegard, Karin
  • Journal of the American Chemical Society, Vol. 122, Issue 14
  • DOI: 10.1021/ja993740k

Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction
journal, November 2008

  • Bergh, Magnus; Huldt, Gösta; Tîmneanu, Nicusor
  • Quarterly Reviews of Biophysics, Vol. 41, Issue 3-4
  • DOI: 10.1017/S003358350800471X

Relaxed averaged alternating reflections for diffraction imaging
journal, November 2004


Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
journal, October 2017

  • Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong
  • Physical Review Letters, Vol. 119, Issue 15, Article No. 158102
  • DOI: 10.1103/PhysRevLett.119.158102

Revision of capillary cone-jet physics: Electrospray and flow focusing
journal, June 2009


The LAMP instrument at the Linac Coherent Light Source free-electron laser
journal, March 2018

  • Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.
  • Review of Scientific Instruments, Vol. 89, Issue 3
  • DOI: 10.1063/1.5017727

Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Macromolecule Analysis Based on Electrophoretic Mobility in Air:  Globular Proteins
journal, January 1996

  • Kaufman, Stanley L.; Skogen, Jeffrey W.; Dorman, Frank D.
  • Analytical Chemistry, Vol. 68, Issue 11
  • DOI: 10.1021/ac951128f

Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams
journal, September 2018


Tomographic phase microscopy
journal, August 2007

  • Choi, Wonshik; Fang-Yen, Christopher; Badizadegan, Kamran
  • Nature Methods, Vol. 4, Issue 9
  • DOI: 10.1038/nmeth1078

High-throughput imaging of heterogeneous cell organelles with an X-ray laser
journal, November 2014


Hummingbird : monitoring and analyzing flash X-ray imaging experiments in real time
journal, April 2016

  • Daurer, Benedikt J.; Hantke, Max F.; Nettelblad, Carl
  • Journal of Applied Crystallography, Vol. 49, Issue 3
  • DOI: 10.1107/S1600576716005926

Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
journal, April 2017


Single Particle X-ray Diffractive Imaging
journal, January 2008

  • Bogan, Michael J.; Benner, W. Henry; Boutet, Sébastien
  • Nano Letters, Vol. 8, Issue 1, p. 310-316
  • DOI: 10.1021/nl072728k

Droplet size measurements of various nebulizers usingdifferential electrical mobility particle sizer
journal, January 1991


Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams
journal, January 1998


Hawk : the image reconstruction package for coherent X-ray diffractive imaging
journal, October 2010

  • Maia, Filipe R. N. C.; Ekeberg, Tomas; van der Spoel, David
  • Journal of Applied Crystallography, Vol. 43, Issue 6
  • DOI: 10.1107/S0021889810036083

Liquid Capillary Micro/Nanojets in Free-Jet Expansion
journal, April 2010

  • Gañán-Calvo, Alfonso M.; DePonte, Daniel P.; Herrada, Miguel A.
  • Small, Vol. 6, Issue 7
  • DOI: 10.1002/smll.200901786

Condor : a simulation tool for flash X-ray imaging
journal, July 2016

  • Hantke, Max F.; Ekeberg, Tomas; Maia, Filipe R. N. C.
  • Journal of Applied Crystallography, Vol. 49, Issue 4
  • DOI: 10.1107/S1600576716009213

Femtosecond free-electron laser x-ray diffraction data sets for algorithm development
journal, January 2012

  • Kassemeyer, Stephan; Steinbrener, Jan; Lomb, Lukas
  • Optics Express, Vol. 20, Issue 4
  • DOI: 10.1364/OE.20.004149

Phase retrieval algorithms: a comparison
journal, January 1982


Optimizing aerodynamic lenses for single-particle imaging
journal, October 2018


The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
journal, April 2015

  • Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515004646

Electrospray ionization for mass spectrometry of large biomolecules
journal, October 1989


Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams
text, January 2018


Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry
journal, March 2007


The linac coherent light source single particle imaging road map
journal, July 2015

  • Aquila, A.; Barty, A.; Bostedt, C.
  • Structural Dynamics, Vol. 2, Issue 4
  • DOI: 10.1063/1.4918726

Gas dynamic virtual nozzle for generation of microscopic droplet streams
journal, September 2008

  • DePonte, D. P.; Weierstall, U.; Schmidt, K.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 19, Article No. 195505
  • DOI: 10.1088/0022-3727/41/19/195505

Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources
journal, March 2010

  • Strüder, Lothar; Epp, Sascha; Rolles, Daniel
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 614, Issue 3
  • DOI: 10.1016/j.nima.2009.12.053

Crystallization and preliminary x-ray studies of spinach ribulose 1,5-bisphosphate carboxylase/oxygenase complexed with activator and a transition state analogue.
journal, December 1983


Relaxed averaged alternating reflections for diffraction imaging
journal, August 2008


Works referencing / citing this record:

Megahertz single-particle imaging at the European XFEL
journal, May 2020

  • Sobolev, Egor; Zolotarev, Sergei; Giewekemeyer, Klaus
  • Communications Physics, Vol. 3, Issue 1
  • DOI: 10.1038/s42005-020-0362-y

Plasma channel formation in NIR laser-irradiated carrier gas from an aerosol nanoparticle injector
journal, June 2019


A guide to sample delivery systems for serial crystallography
journal, August 2019

  • Zhao, Feng‐Zhu; Zhang, Bin; Yan, Er‐Kai
  • The FEBS Journal, Vol. 286, Issue 22
  • DOI: 10.1111/febs.15099

Megahertz single-particle imaging at the European XFEL
text, January 2020

  • Sobolev, Egor; Zolotarev, Sergei; Giewekemeyer, Klaus
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-02231

A statistical approach to detect protein complexes at X-ray free electron laser facilities
journal, December 2018

  • Pietrini, Alberto; Bielecki, Johan; Timneanu, Nicusor
  • Communications Physics, Vol. 1, Issue 1
  • DOI: 10.1038/s42005-018-0092-6

Ultracompact 3D microfluidics for time-resolved structural biology
journal, January 2020


The role of transient resonances for ultra-fast imaging of single sucrose nanoclusters
journal, January 2020


Ultracompact 3D microfluidics for time-resolved structural biology
text, January 2020

  • Knoška, Juraj; Adriano, Luigi; Awel, Salah
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-00687

Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters
journal, January 2020

  • Morais, Alan Í. S.; Vieira, Ewerton G.; Afewerki, Samson
  • Journal of Functional Biomaterials, Vol. 11, Issue 1
  • DOI: 10.3390/jfb11010004

Ultracompact 3D microfluidics for time-resolved structural biology
text, January 2020

  • Knoska, Juraj; Adriano, Luigi; Awel, Salah
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-00623

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.