skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Free-electron laser inverse-Compton interaction x-ray source

Abstract

Free-electron lasers (FEL) and synchrotron sources of high brilliance x-rays have been confirmed to be of tremendous value in basic and applied research. Inverse-Compton sources (ICS) can achieve brilliance matching the requirements of many applications pioneered at those FEL and synchrotron facilities—including phase contrast imaging, macromolecular x-ray crystallography, and x-ray microscopy—but with size, cost, and complexity compatible with a small laboratory. The free-electron laser inverse-Compton interaction compact x-ray source at the University of Hawaii at Manoa is a unique approach to an ICS which employs an FEL as the laser source. We have measured a total average flux of 3.0 × 105 photons / second with an average brilliance of 2.0 × 107 photons / s mm2 mrad2 0.1% of bandwidth (BW) with a peak energy of 10.9 keV from the source. While these results are modest in comparison to the standards set by other IC sources, upgrades to the system have the potential to increase the total average flux to 9.2 × 1011 photons / second with an average brilliance of 1.9 × 1012 photons / s mm2 mrad2 0.1% BW: comparing more favorably to other sources. We discuss the scientific program, the progress made in design and development,more » and the achievements of the source to date. We also outline future upgrades and integration needed to yield an enabling source for emerging high brilliance x-ray applications.« less

Authors:
 [1];  [2];  [3];  [4];  [2];  [2];  [2];  [2];  [2];  [2]
  1. Univ. of Hawaii, Honolulu, HI (United States); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  2. Univ. of Hawaii, Honolulu, HI (United States)
  3. Univ. of Hawaii, Honolulu, HI (United States); Oceanit, Honolulu, HI (United States)
  4. Univ. of Hawaii, Honolulu, HI (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Dept. of Energy (DOE), Washington DC (United States). Office of High Energy Physics
Sponsoring Org.:
National Science Foundation (NSF); Department of Homeland Security Academic Research Initiative; USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1532398
Alternate Identifier(s):
OSTI ID: 1597519
Grant/Contract Number:  
AC02-76SF00515; 2010-DN-077-AR1045-02; 2011-DN-077-AR1055-02; SC0010504
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Accelerators and Beams
Additional Journal Information:
Journal Volume: 22; Journal Issue: 4; Journal ID: ISSN 2469-9888
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Niknejadi, Pardis, Kowalczyk, Jeremy M. D., Hadmack, Michael R., Jacobson, Bryce T., Howe, Ian, Kan, Shidong, Smith, Steven, Szarmes, Eric B., Varner, Gary, and Madey, John M. J. Free-electron laser inverse-Compton interaction x-ray source. United States: N. p., 2019. Web. doi:10.1103/physrevaccelbeams.22.040704.
Niknejadi, Pardis, Kowalczyk, Jeremy M. D., Hadmack, Michael R., Jacobson, Bryce T., Howe, Ian, Kan, Shidong, Smith, Steven, Szarmes, Eric B., Varner, Gary, & Madey, John M. J. Free-electron laser inverse-Compton interaction x-ray source. United States. doi:10.1103/physrevaccelbeams.22.040704.
Niknejadi, Pardis, Kowalczyk, Jeremy M. D., Hadmack, Michael R., Jacobson, Bryce T., Howe, Ian, Kan, Shidong, Smith, Steven, Szarmes, Eric B., Varner, Gary, and Madey, John M. J. Mon . "Free-electron laser inverse-Compton interaction x-ray source". United States. doi:10.1103/physrevaccelbeams.22.040704. https://www.osti.gov/servlets/purl/1532398.
@article{osti_1532398,
title = {Free-electron laser inverse-Compton interaction x-ray source},
author = {Niknejadi, Pardis and Kowalczyk, Jeremy M. D. and Hadmack, Michael R. and Jacobson, Bryce T. and Howe, Ian and Kan, Shidong and Smith, Steven and Szarmes, Eric B. and Varner, Gary and Madey, John M. J.},
abstractNote = {Free-electron lasers (FEL) and synchrotron sources of high brilliance x-rays have been confirmed to be of tremendous value in basic and applied research. Inverse-Compton sources (ICS) can achieve brilliance matching the requirements of many applications pioneered at those FEL and synchrotron facilities—including phase contrast imaging, macromolecular x-ray crystallography, and x-ray microscopy—but with size, cost, and complexity compatible with a small laboratory. The free-electron laser inverse-Compton interaction compact x-ray source at the University of Hawaii at Manoa is a unique approach to an ICS which employs an FEL as the laser source. We have measured a total average flux of 3.0 × 105 photons / second with an average brilliance of 2.0 × 107 photons / s mm2 mrad2 0.1% of bandwidth (BW) with a peak energy of 10.9 keV from the source. While these results are modest in comparison to the standards set by other IC sources, upgrades to the system have the potential to increase the total average flux to 9.2 × 1011 photons / second with an average brilliance of 1.9 × 1012 photons / s mm2 mrad2 0.1% BW: comparing more favorably to other sources. We discuss the scientific program, the progress made in design and development, and the achievements of the source to date. We also outline future upgrades and integration needed to yield an enabling source for emerging high brilliance x-ray applications.},
doi = {10.1103/physrevaccelbeams.22.040704},
journal = {Physical Review Accelerators and Beams},
number = 4,
volume = 22,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Nondestructive Detection of Heavily Shielded Materials by Using Nuclear Resonance Fluorescence with a Laser-Compton Scattering γ-ray Source
journal, March 2009

  • Kikuzawa, Nobuhiro; Hajima, Ryoichi; Nishimori, Nobuyuki
  • Applied Physics Express, Vol. 2
  • DOI: 10.1143/APEX.2.036502

Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures
conference, April 2013

  • Settens, Charles; Bunday, Benjamin; Thiel, Brad
  • SPIE Advanced Lithography, SPIE Proceedings
  • DOI: 10.1117/12.2012019

Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings
journal, November 2013

  • Wen, Han; Gomella, Andrew A.; Patel, Ajay
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3659

Nanoscale X-ray imaging
journal, December 2010


Optimized cavity-enhanced x-ray sources for x-ray microscopy
conference, September 2013

  • Madey, J. M. J.; Szarmes, E. B.; Hadmack, M. R.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.2027193

Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
journal, December 2014

  • Graves, W. S.; Bessuille, J.; Brown, P.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 17, Issue 12
  • DOI: 10.1103/PhysRevSTAB.17.120701

The ThomX Project Status
text, January 2014


The Munich Compact Light Source: initial performance measures
journal, July 2016

  • Eggl, Elena; Dierolf, Martin; Achterhold, Klaus
  • Journal of Synchrotron Radiation, Vol. 23, Issue 5
  • DOI: 10.1107/S160057751600967X

Record high-average current from a high-brightness photoinjector
journal, January 2013

  • Dunham, Bruce; Barley, John; Bartnik, Adam
  • Applied Physics Letters, Vol. 102, Issue 3
  • DOI: 10.1063/1.4789395

The TUNL-FELL inverse Compton γ-ray source as a nuclear physics facility
journal, August 1996

  • Scott Carman, T.; Litveninko, Vladimir; Madey, John
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 378, Issue 1-2
  • DOI: 10.1016/0168-9002(95)01486-1

Achromatic Magnetic Mirror for Ion Beams
journal, April 1963

  • Enge, Harald A.
  • Review of Scientific Instruments, Vol. 34, Issue 4
  • DOI: 10.1063/1.1718372

Microwave electron gun
journal, May 1984


Optimization of a thermionic microwave electron gun
journal, July 1991

  • McKee, C. B.; John, Madey M. J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 304, Issue 1-3
  • DOI: 10.1016/0168-9002(91)90892-T

Back-bombardment compensation in microwave thermionic electron guns
journal, December 2014

  • Kowalczyk, Jeremy M. D.; Madey, John M. J.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 17, Issue 12
  • DOI: 10.1103/PhysRevSTAB.17.120402

Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser
journal, June 2013

  • Hadmack, M. R.; Jacobson, B. T.; Kowalczyk, J. M. D.
  • Review of Scientific Instruments, Vol. 84, Issue 6
  • DOI: 10.1063/1.4809938

Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source
journal, February 2015

  • Hadmack, M. R.; Szarmes, E. B.; Madey, J. M. J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 772
  • DOI: 10.1016/j.nima.2014.10.074

Induced and spontaneous interpulse phase locking in a free-electron laser
journal, June 1992


Mode control on short-pulse FELs using a Michelson-mirror resonator
journal, October 1990

  • Szarmes, Eric B.; Benson, Stephen V.; Badey, John M. J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 296, Issue 1-3
  • DOI: 10.1016/0168-9002(90)91196-I

Optical phase locking of a 286-GHz harmonically mode-locked free-electron laser
journal, January 1996

  • Szarmes, Eric B.; Madden, Angus D.; Madey, John M. J.
  • Journal of the Optical Society of America B, Vol. 13, Issue 7
  • DOI: 10.1364/JOSAB.13.001588

Compton Sources of Electromagnetic Radiation
journal, January 2010

  • Krafft, Geoffrey A.; Priebe, Gerd
  • Reviews of Accelerator Science and Technology, Vol. 03, Issue 01
  • DOI: 10.1142/S1793626810000440

Lanthanum Hexaboride Electron Emitter
journal, May 1972

  • Ahmed, H.; Broers, A. N.
  • Journal of Applied Physics, Vol. 43, Issue 5
  • DOI: 10.1063/1.1661472

Early Milestones in the Evolution of Accelerators
journal, January 2008


Development of a 4-mirror optical cavity for an inverse Compton scattering experiment in the STF
journal, May 2014

  • Shimizu, Hirotaka; Aryshev, Alexander; Higashi, Yasuo
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 745
  • DOI: 10.1016/j.nima.2014.01.055

Absolute-length determination of a long-baseline Fabry–Perot cavity by means of resonating modulation sidebands
journal, January 1999

  • Araya, Akito; Telada, Souichi; Tochikubo, Kuniharu
  • Applied Optics, Vol. 38, Issue 13
  • DOI: 10.1364/AO.38.002848