skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Higher climatological temperature sensitivity of soil carbon in cold than warm climates

Abstract

The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). In this study, to assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. We show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. Lastly, these results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Stockholm Univ. (Sweden); Stanford Univ., CA (United States)
  3. National Center for Atmospheric Research, Boulder, CO (United States)
  4. National Center for Atmospheric Research, Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1532269
Grant/Contract Number:  
AC02-05CH11231; FC03-97ER62402; SC0014374
Resource Type:
Accepted Manuscript
Journal Name:
Nature Climate Change
Additional Journal Information:
Journal Volume: 7; Journal Issue: 11; Journal ID: ISSN 1758-678X
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Koven, Charles D., Hugelius, Gustaf, Lawrence, David M., and Wieder, William R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. United States: N. p., 2017. Web. doi:10.1038/nclimate3421.
Koven, Charles D., Hugelius, Gustaf, Lawrence, David M., & Wieder, William R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. United States. doi:10.1038/nclimate3421.
Koven, Charles D., Hugelius, Gustaf, Lawrence, David M., and Wieder, William R. Mon . "Higher climatological temperature sensitivity of soil carbon in cold than warm climates". United States. doi:10.1038/nclimate3421. https://www.osti.gov/servlets/purl/1532269.
@article{osti_1532269,
title = {Higher climatological temperature sensitivity of soil carbon in cold than warm climates},
author = {Koven, Charles D. and Hugelius, Gustaf and Lawrence, David M. and Wieder, William R.},
abstractNote = {The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). In this study, to assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. We show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. Lastly, these results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.},
doi = {10.1038/nclimate3421},
journal = {Nature Climate Change},
number = 11,
volume = 7,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 57 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Field information links permafrost carbon to physical vulnerabilities of thawing: C AND N VULERABLITIES OF THAWING
journal, August 2012

  • Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL051958

The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate
journal, January 1992


Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level
journal, July 2010


Soil carbon pools and world life zones
journal, July 1982

  • Post, Wilfred M.; Emanuel, William R.; Zinke, Paul J.
  • Nature, Vol. 298, Issue 5870
  • DOI: 10.1038/298156a0

Improvements to a MODIS global terrestrial evapotranspiration algorithm
journal, August 2011

  • Mu, Qiaozhen; Zhao, Maosheng; Running, Steven W.
  • Remote Sensing of Environment, Vol. 115, Issue 8
  • DOI: 10.1016/j.rse.2011.02.019

SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach
journal, January 2007


A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES
journal, February 2005

  • Krinner, G.; Viovy, Nicolas; de Noblet-Ducoudré, Nathalie
  • Global Biogeochemical Cycles, Vol. 19, Issue 1
  • DOI: 10.1029/2003GB002199

Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?
journal, April 2007


Responses of two nonlinear microbial models to warming and increased carbon input
journal, January 2016


Quantifying global soil carbon losses in response to warming
journal, November 2016

  • Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.
  • Nature, Vol. 540, Issue 7631
  • DOI: 10.1038/nature20150

Improvements of the MODIS terrestrial gross and net primary production global data set
journal, March 2005

  • Zhao, Maosheng; Heinsch, Faith Ann; Nemani, Ramakrishna R.
  • Remote Sensing of Environment, Vol. 95, Issue 2
  • DOI: 10.1016/j.rse.2004.12.011

Factors of Soil Formation
journal, January 1941


Long-term warming restructures Arctic tundra without changing net soil carbon storage
journal, May 2013

  • Sistla, Seeta A.; Moore, John C.; Simpson, Rodney T.
  • Nature, Vol. 497, Issue 7451
  • DOI: 10.1038/nature12129

Global covariation of carbon turnover times with climate in terrestrial ecosystems
journal, September 2014

  • Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13731

Soil carbon storage controlled by interactions between geochemistry and climate
journal, August 2015

  • Doetterl, Sebastian; Stevens, Antoine; Six, Johan
  • Nature Geoscience, Vol. 8, Issue 10
  • DOI: 10.1038/ngeo2516

Managing uncertainty in soil carbon feedbacks to climate change
journal, July 2016

  • Bradford, Mark A.; Wieder, William R.; Bonan, Gordon B.
  • Nature Climate Change, Vol. 6, Issue 8
  • DOI: 10.1038/nclimate3071

The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d)
journal, February 2001


Model estimates of CO2 emissions from soil in response to global warming
journal, May 1991

  • Jenkinson, D. S.; Adams, D. E.; Wild, A.
  • Nature, Vol. 351, Issue 6324
  • DOI: 10.1038/351304a0

Global soil carbon projections are improved by modelling microbial processes
journal, July 2013

  • Wieder, William R.; Bonan, Gordon B.; Allison, Steven D.
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1951

Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
journal, March 2006


Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


On the Temperature Dependence of Soil Respiration
journal, June 1994

  • Lloyd, J.; Taylor, J. A.
  • Functional Ecology, Vol. 8, Issue 3
  • DOI: 10.2307/2389824

Diagnosing Present and Future Permafrost from Climate Models
journal, August 2013


Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature
journal, April 2000

  • Giardina, Christian P.; Ryan, Michael G.
  • Nature, Vol. 404, Issue 6780
  • DOI: 10.1038/35009076

Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models
journal, August 2013

  • Arora, Vivek K.; Boer, George J.; Friedlingstein, Pierre
  • Journal of Climate, Vol. 26, Issue 15
  • DOI: 10.1175/JCLI-D-12-00494.1

GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data
dataset, January 2011

  • Schneider, Udo; Becker, Andreas; Finger, Peter
  • Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst
  • DOI: 10.5676/DWD_GPCC/FD_M_V6_050

Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
journal, January 2013

  • Todd-Brown, K. E. O.; Randerson, J. T.; Post, W. M.
  • Biogeosciences, Vol. 10, Issue 3
  • DOI: 10.5194/bg-10-1717-2013

Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions
journal, November 2014


Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4
journal, January 2013


Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century
journal, September 2016


The HadGEM2-ES implementation of CMIP5 centennial simulations
journal, January 2011

  • Jones, C. D.; Hughes, J. K.; Bellouin, N.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-543-2011

Soil-carbon response to warming dependent on microbial physiology
journal, April 2010

  • Allison, Steven D.; Wallenstein, Matthew D.; Bradford, Mark A.
  • Nature Geoscience, Vol. 3, Issue 5
  • DOI: 10.1038/ngeo846

Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models
journal, January 2015


Thermal adaptation of soil microbial respiration to elevated temperature
journal, December 2008


Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013

  • Harris, I.; Jones, P. D.; Osborn, T. J.
  • International Journal of Climatology, Vol. 34, Issue 3
  • DOI: 10.1002/joc.3711

An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies
journal, October 2014

  • Milly, P. C. D.; Malyshev, Sergey L.; Shevliakova, Elena
  • Journal of Hydrometeorology, Vol. 15, Issue 5
  • DOI: 10.1175/JHM-D-13-0162.1

Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum
journal, November 2011

  • Ciais, P.; Tagliabue, A.; Cuntz, M.
  • Nature Geoscience, Vol. 5, Issue 1
  • DOI: 10.1038/ngeo1324

Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
journal, March 2015

  • Koven, Charles D.; Lawrence, David M.; Riley, William J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1415123112

    Works referencing / citing this record:

    Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models
    journal, November 2017

    • Wieder, William R.; Hartman, Melannie D.; Sulman, Benjamin N.
    • Global Change Biology, Vol. 24, Issue 4
    • DOI: 10.1111/gcb.13979

    Leveraging Environmental Research and Observation Networks to Advance Soil Carbon Science
    journal, May 2019

    • Weintraub, Samantha R.; Flores, Alejandro N.; Wieder, William R.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 5
    • DOI: 10.1029/2018jg004956

    Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland
    journal, October 2019

    • Jia, Juan; Cao, Zhenjiao; Liu, Chengzhu
    • Global Change Biology, Vol. 25, Issue 12
    • DOI: 10.1111/gcb.14823

    Zones of influence for soil organic matter dynamics: A conceptual framework for data and models
    journal, August 2019

    • Cagnarini, Claudia; Blyth, Eleanor; Emmett, Bridget A.
    • Global Change Biology, Vol. 25, Issue 12
    • DOI: 10.1111/gcb.14787

    Removal of grazers alters the response of tundra soil carbon to warming and enhanced nitrogen availability
    journal, December 2019

    • Ylänne, Henni; Kaarlejärvi, Elina; Väisänen, Maria
    • Ecological Monographs, Vol. 90, Issue 1
    • DOI: 10.1002/ecm.1396

    Increasingly Important Role of Atmospheric Aridity on Tibetan Alpine Grasslands
    journal, March 2018

    • Ding, Jinzhi; Yang, Tao; Zhao, Yutong
    • Geophysical Research Letters, Vol. 45, Issue 6
    • DOI: 10.1002/2017gl076803

    Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
    journal, January 2020

    • Honegger, Louis; Adatte, Thierry; Spangenberg, Jorge E.
    • Climate of the Past, Vol. 16, Issue 1
    • DOI: 10.5194/cp-16-227-2020

    New Techniques and Data for Understanding the Global Soil Respiration Flux
    journal, September 2018


    Greenhouse Gas Production and Transport in Desert Soils of the Southwestern United States
    journal, November 2018

    • Oerter, Erik; Mills, Jennifer V.; Maurer, Gregory E.
    • Global Biogeochemical Cycles, Vol. 32, Issue 11
    • DOI: 10.1029/2018gb006035

    Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
    journal, March 2018

    • McGuire, A. David; Lawrence, David M.; Koven, Charles
    • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
    • DOI: 10.1073/pnas.1719903115

    The influence of soil communities on the temperature sensitivity of soil respiration
    journal, August 2018


    Opinion: Soil carbon sequestration is an elusive climate mitigation tool
    journal, November 2018

    • Amundson, Ronald; Biardeau, Léopold
    • Proceedings of the National Academy of Sciences, Vol. 115, Issue 46
    • DOI: 10.1073/pnas.1815901115

    The Response of Permafrost and High‐Latitude Ecosystems Under Large‐Scale Stratospheric Aerosol Injection and Its Termination
    journal, June 2019

    • Lee, Hanna; Ekici, Altug; Tjiputra, Jerry
    • Earth's Future, Vol. 7, Issue 6
    • DOI: 10.1029/2018ef001146

    The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
    journal, December 2019

    • Lawrence, David M.; Fisher, Rosie A.; Koven, Charles D.
    • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
    • DOI: 10.1029/2018ms001583

    Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems
    journal, February 2020

    • Huntzinger, D. N.; Schaefer, K.; Schwalm, C.
    • Environmental Research Letters, Vol. 15, Issue 2
    • DOI: 10.1088/1748-9326/ab6784

    A substantial role of soil erosion in the land carbon sink and its future changes
    journal, February 2020

    • Tan, Zeli; Leung, L. Ruby; Li, Hong‐Yi
    • Global Change Biology, Vol. 26, Issue 4
    • DOI: 10.1111/gcb.14982

    The influence of soil communities on the temperature sensitivity of soil respiration
    journal, August 2018


    Soil Organic Matter Temperature Sensitivity Cannot be Directly Inferred From Spatial Gradients
    journal, June 2019

    • Abramoff, Rose Z.; Torn, Margaret S.; Georgiou, Katerina
    • Global Biogeochemical Cycles, Vol. 33, Issue 6
    • DOI: 10.1029/2018gb006001

    Detailed global modelling of soil organic carbon in cropland, grassland and forest soils
    journal, September 2019


    Controls of soil organic matter on soil thermal dynamics in the northern high latitudes
    journal, July 2019


    Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange
    journal, July 2019

    • Fu, Zheng; Stoy, Paul C.; Poulter, Benjamin
    • Global Change Biology, Vol. 25, Issue 10
    • DOI: 10.1111/gcb.14731

    Process-Oriented Modeling of a High Arctic Tundra Ecosystem: Long-Term Carbon Budget and Ecosystem Responses to Interannual Variations of Climate
    journal, April 2018

    • Zhang, Wenxin; Jansson, Per-Erik; Schurgers, Guy
    • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 4
    • DOI: 10.1002/2017jg003956

    Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics
    journal, April 2019


    Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter
    journal, April 2018

    • Craig, Matthew E.; Turner, Benjamin L.; Liang, Chao
    • Global Change Biology, Vol. 24, Issue 8
    • DOI: 10.1111/gcb.14132

    Biogeographic variation in temperature sensitivity of decomposition in forest soils
    journal, October 2019

    • Li, Jinquan; Nie, Ming; Pendall, Elise
    • Global Change Biology, Vol. 26, Issue 3
    • DOI: 10.1111/gcb.14838

    Evaluating the simulated mean soil carbon transit times by Earth system models using observations
    journal, January 2019


    Scientists’ warning to humanity: microorganisms and climate change
    journal, June 2019

    • Cavicchioli, Ricardo; Ripple, William J.; Timmis, Kenneth N.
    • Nature Reviews Microbiology, Vol. 17, Issue 9
    • DOI: 10.1038/s41579-019-0222-5

    Missing pieces to modeling the Arctic-Boreal puzzle
    journal, February 2018

    • Fisher, Joshua B.; Hayes, Daniel J.; Schwalm, Christopher R.
    • Environmental Research Letters, Vol. 13, Issue 2
    • DOI: 10.1088/1748-9326/aa9d9a

    Precipitation thresholds regulate net carbon exchange at the continental scale
    journal, September 2018


    Generic parameters of first-order kinetics accurately describe soil organic matter decay in bare fallow soils over a wide edaphic and climatic range
    journal, December 2019


    Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system
    journal, January 2019

    • López-Blanco, Efrén; Exbrayat, Jean-François; Lund, Magnus
    • Earth System Dynamics, Vol. 10, Issue 2
    • DOI: 10.5194/esd-10-233-2019

    Greenhouse Gas Concentration and Volcanic Eruptions Controlled the Variability of Terrestrial Carbon Uptake Over the Last Millennium
    journal, June 2019

    • Zhang, Xuanze; Peng, Shushi; Ciais, Philippe
    • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 6
    • DOI: 10.1029/2018ms001566