DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Co11Li[(OH)5O][(PO3OH)(PO4)5], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework

Abstract

A new metastable phase, featuring a lithium-stabilized mixed-valence cobalt(II,III) hydroxide phosphate framework, Co11.0(1)Li1.0(2)[(OH)5O][(PO3OH)(PO4)5], corresponding to the simplified composition Co1.84(2)Li0.16(3)(OH)PO4, is prepared by hydrothermal synthesis. Because the pH-dependent formation of other phases such as Co3(OH)2(PO3OH)2 and olivine-type LiCoPO4 competes in the process, a pH value of 5.0 is crucial for obtaining a single-phase material. The crystals with dimensions of 15 μm × 30 μm exhibit a unique elongated triangular pyramid morphology with a lamellar fine structure. Powder X-ray diffraction experiments reveal that the phase is isostructural with the natural phosphate minerals holtedahlite and satterlyite, and crystallizes in the trigonal space group P31$$m$$ ($$a$$ = 11.2533(4) Å, c = 4.9940(2) Å, V = 547.70(3) Å3, Z = 1). The three-dimensional network structure is characterized by partially Li-substituted, octahedral [M2O8(OH)] (M = Co, Li) dimer units which form double chains that run along the [001] direction and are connected by [PO4] and [PO3(OH)] tetrahedra. Because no Li-free P31$$m$$-type Co2(OH)PO4 phase could be prepared, it can be assumed that the Li ions are crucial for the stabilization of the framework. Co L-edge X-ray absorption spectroscopy demonstrates that the cobalt ions adopt the oxidation states +2 and +3 and hence provides further evidence for the incorporation of Li in the charge-balanced framework. The presence of three independent hydroxyl groups is further confirmed by infrared spectroscopy. Magnetization measurements imply a paramagnetic to antiferromagnetic transition at around T = 25 K as well as a second transition at around 9–12 K with a ferromagnetic component below this temperature. The metastable character of the phase is demonstrated by thermogravimetric analysis and differential scanning calorimetry, which above 558 °C reveal a two-step decomposition to CoO, Co3(PO4)2, and olivine-type LiCoPO4 with release of water and oxygen.

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [1]
  1. Technical Univ. of Munich, Garching (Germany)
  2. Bavarian Academy of Sciences and Humanities, Garching (Germany). Walther Meissner Inst.
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1532262
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 56; Journal Issue: 18; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ludwig, Jennifer, Geprägs, Stephan, Nordlund, Dennis, Doeff, Marca M., and Nilges, Tom. Co11Li[(OH)5O][(PO3OH)(PO4)5], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework. United States: N. p., 2017. Web. doi:10.1021/acs.inorgchem.7b01152.
Ludwig, Jennifer, Geprägs, Stephan, Nordlund, Dennis, Doeff, Marca M., & Nilges, Tom. Co11Li[(OH)5O][(PO3OH)(PO4)5], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework. United States. https://doi.org/10.1021/acs.inorgchem.7b01152
Ludwig, Jennifer, Geprägs, Stephan, Nordlund, Dennis, Doeff, Marca M., and Nilges, Tom. Tue . "Co11Li[(OH)5O][(PO3OH)(PO4)5], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework". United States. https://doi.org/10.1021/acs.inorgchem.7b01152. https://www.osti.gov/servlets/purl/1532262.
@article{osti_1532262,
title = {Co11Li[(OH)5O][(PO3OH)(PO4)5], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework},
author = {Ludwig, Jennifer and Geprägs, Stephan and Nordlund, Dennis and Doeff, Marca M. and Nilges, Tom},
abstractNote = {A new metastable phase, featuring a lithium-stabilized mixed-valence cobalt(II,III) hydroxide phosphate framework, Co11.0(1)Li1.0(2)[(OH)5O][(PO3OH)(PO4)5], corresponding to the simplified composition Co1.84(2)Li0.16(3)(OH)PO4, is prepared by hydrothermal synthesis. Because the pH-dependent formation of other phases such as Co3(OH)2(PO3OH)2 and olivine-type LiCoPO4 competes in the process, a pH value of 5.0 is crucial for obtaining a single-phase material. The crystals with dimensions of 15 μm × 30 μm exhibit a unique elongated triangular pyramid morphology with a lamellar fine structure. Powder X-ray diffraction experiments reveal that the phase is isostructural with the natural phosphate minerals holtedahlite and satterlyite, and crystallizes in the trigonal space group P31$m$ ($a$ = 11.2533(4) Å, c = 4.9940(2) Å, V = 547.70(3) Å3, Z = 1). The three-dimensional network structure is characterized by partially Li-substituted, octahedral [M2O8(OH)] (M = Co, Li) dimer units which form double chains that run along the [001] direction and are connected by [PO4] and [PO3(OH)] tetrahedra. Because no Li-free P31$m$-type Co2(OH)PO4 phase could be prepared, it can be assumed that the Li ions are crucial for the stabilization of the framework. Co L-edge X-ray absorption spectroscopy demonstrates that the cobalt ions adopt the oxidation states +2 and +3 and hence provides further evidence for the incorporation of Li in the charge-balanced framework. The presence of three independent hydroxyl groups is further confirmed by infrared spectroscopy. Magnetization measurements imply a paramagnetic to antiferromagnetic transition at around T = 25 K as well as a second transition at around 9–12 K with a ferromagnetic component below this temperature. The metastable character of the phase is demonstrated by thermogravimetric analysis and differential scanning calorimetry, which above 558 °C reveal a two-step decomposition to CoO, Co3(PO4)2, and olivine-type LiCoPO4 with release of water and oxygen.},
doi = {10.1021/acs.inorgchem.7b01152},
journal = {Inorganic Chemistry},
number = 18,
volume = 56,
place = {United States},
year = {Tue Aug 29 00:00:00 EDT 2017},
month = {Tue Aug 29 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Old materials with new tricks: multifunctional open-framework materials
journal, January 2007

  • Maspoch, Daniel; Ruiz-Molina, Daniel; Veciana, Jaume
  • Chemical Society Reviews, Vol. 36, Issue 5
  • DOI: 10.1039/b501600m

Electrical conduction in cobalt-phosphate glasses
journal, May 1983


Synthesis of Transition-Metal-Doped KTiOPO 4 and Lanthanide-Doped RbTiOAsO 4 Isomorphs That Absorb Visible Light
journal, January 1996

  • Anderson, Mark T.; Phillips, Mark L. F.; Sinclair, Michael B.
  • Chemistry of Materials, Vol. 8, Issue 1
  • DOI: 10.1021/cm950352i

FePO Catalysts for the Selective Oxidative Dehydrogenation of Isobutyric Acid into Methacrylic Acid
journal, February 1998


In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Cobalt–phosphate oxygen-evolving compound
journal, January 2009

  • Kanan, Matthew W.; Surendranath, Yogesh; Nocera, Daniel G.
  • Chemical Society Reviews, Vol. 38, Issue 1, p. 109-114
  • DOI: 10.1039/B802885K

Photoelectrochemical Water Oxidation by Cobalt Catalyst (“Co−Pi”)/α-Fe 2 O 3 Composite Photoanodes: Oxygen Evolution and Resolution of a Kinetic Bottleneck
journal, March 2010

  • Zhong, Diane K.; Gamelin, Daniel R.
  • Journal of the American Chemical Society, Vol. 132, Issue 12
  • DOI: 10.1021/ja908730h

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Olivine LiCoPO[sub 4] as 4.8 V Electrode Material for Lithium Batteries
journal, January 1999

  • Amine, K.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 4
  • DOI: 10.1149/1.1390994

Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends
journal, June 2013


Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries
journal, June 2013

  • Masquelier, Christian; Croguennec, Laurence
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr3001862

Crystal Structure of Paramagnetic Ludlamite, Fe 3 (PO 4 ) 2 ·4H 2 O, at 298°K
journal, March 1966

  • Abrahams, S. C.; Bernstein, J. L.
  • The Journal of Chemical Physics, Vol. 44, Issue 6
  • DOI: 10.1063/1.1727026

Die Rolle der Hydrothermalsynthese in der präparativen Chemie
journal, December 1985


The linear magnetoelectric effect in LiCoPO 4 Revisited
journal, November 1994


Weak ferromagnetism in the antiferromagnetic magnetoelectric crystal LiCoPO4
journal, September 2001

  • Kharchenko, N. F.; Kharchenko, Yu. N.; Szymczak, R.
  • Low Temperature Physics, Vol. 27, Issue 9
  • DOI: 10.1063/1.1414584

Two New Adamite-Type Phases, CO2(OH)PO4 and Zn2(OH)PO4: Structure-Directing Effect of Organic Additives
journal, January 1995

  • Harrison, William T. A.; Vaughey, J. T.; Dussack, Laurie L.
  • Journal of Solid State Chemistry, Vol. 114, Issue 1
  • DOI: 10.1006/jssc.1995.1022

Ionothermal Synthesis, Crystal Structure, and Magnetic Study of Co 2 PO 4 OH Isostructural with Caminite
journal, February 2014

  • Wang, Guangmei; Valldor, Martin; Spielberg, Eike T.
  • Inorganic Chemistry, Vol. 53, Issue 6
  • DOI: 10.1021/ic4029904

Spin-glass behavior in a three-dimensional antiferromagnet ordered phase: Magnetic structure of Co 2 ( OH ) ( PO 4 )
journal, September 2002


Effect of Ni 2+ (S = 1) and Cu 2+ (S = ½) substitution on the antiferromagnetic ordered phase Co 2 (OH)PO 4 with spin glass behaviour
journal, January 2004

  • de Pedro, I.; Rojo, J. M.; Jubera, V.
  • J. Mater. Chem., Vol. 14, Issue 7
  • DOI: 10.1039/B313999A

Magnetic properties of Co2−Cu (OH)PO4 (x=0, 1 and 2)
journal, May 2004


Spectroscopic and Magnetic Properties of Co1.7Mn0.3(OH)PO4
journal, September 2007

  • de Pedro, I.; Rojo, J. M.; Lezama, L.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 633, Issue 11-12
  • DOI: 10.1002/zaac.200700226

Synthesis, Spectroscopic and Magnetic Properties of the Co2(OH)(PO4)1-x(AsO4)x [0 ≤ x ≤ 1] Solid Solution
journal, May 2010

  • de Pedro, Imanol; Rojo, José María; Rodríguez Fernández, Jesús
  • European Journal of Inorganic Chemistry, Vol. 2010, Issue 17
  • DOI: 10.1002/ejic.201000138

The structure of the magnesium hydroxide sulfate hydrate MgSO 4 .1/3Mg(OH) 2 .1/3H 2 O
journal, May 1981

  • Keefer, K. D.; Hochella, M. F.; de Jong, B. H. W. S.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 37, Issue 5
  • DOI: 10.1107/S0567740881004949

Holtedahlite, a new magnesium phosphate from Modum, Norway
journal, October 1979


The crystal structure of natural and synthetic holtedahlite
journal, May 1989

  • R�mming, C.; Raade, G.
  • Mineralogy and Petrology, Vol. 40, Issue 2
  • DOI: 10.1007/BF01164319

Crystallographic Computing System JANA2006: General features
journal, January 2014

  • Petříček, Václav; Dušek, Michal; Palatinus, Lukáš
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2014-1737

A correction for powder diffraction peak asymmetry due to axial divergence
journal, December 1994

  • Finger, L. W.; Cox, D. E.; Jephcoat, A. P.
  • Journal of Applied Crystallography, Vol. 27, Issue 6
  • DOI: 10.1107/S0021889894004218

Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge
journal, March 1981


STRUCTURE TIDY – a computer program to standardize crystal structure data
journal, April 1987


Structure validation in chemical crystallography
journal, January 2009

  • Spek, Anthony L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 2, p. 148-155
  • DOI: 10.1107/S090744490804362X

E.s.d.'s and estimated probable error obtained in Rietveld refinements with local correlations
journal, February 1991


Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

Co Polyoxometalates and a Co 3 O 4 Thin Film Investigated by L-Edge X-ray Absorption Spectroscopy
journal, February 2015

  • Hibberd, Amber M.; Doan, Hoang Q.; Glass, Elliot N.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 8
  • DOI: 10.1021/jp5124037

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Protons in the magnesium phosphates phosphoellenbergerite and holtedahlite; an IR and NMR study
journal, April 1996

  • Brunet, Fabrice; Schaller, Torsten
  • American Mineralogist, Vol. 81, Issue 3-4
  • DOI: 10.2138/am-1996-3-413

Identifying the Structure of the Intermediate, Li 2/3 CoPO 4 , Formed during Electrochemical Cycling of LiCoPO 4
journal, October 2014

  • Strobridge, Fiona C.; Clément, Raphaële J.; Leskes, Michal
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502680w

Structure refinement of Co3(OH)2(PO3OH)2 and Co[PO2(OH)2]2.2H2O
journal, December 1992

  • Effenberger, H.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 48, Issue 12
  • DOI: 10.1107/S0108270192002920

Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithium ion batteries
journal, February 2005


Die Konstitution der Mischkristalle und die Raumf�llung der Atome
journal, January 1921


The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications
journal, January 2008


A new LiCoPO4 polymorph via low temperature synthesis
journal, January 2013

  • Jähne, Carsten; Neef, Christoph; Koo, Changhyun
  • Journal of Materials Chemistry A, Vol. 1, Issue 8
  • DOI: 10.1039/c2ta00118g

Oxygen 1s and cobalt 2p X-ray absorption of cobalt oxides
journal, April 1993

  • Groot, F. M. F. de; Abbate, M.; Elp, J. van
  • Journal of Physics: Condensed Matter, Vol. 5, Issue 14
  • DOI: 10.1088/0953-8984/5/14/023

2 p x-ray absorption of 3 d transition-metal compounds: An atomic multiplet description including the crystal field
journal, September 1990


Different Look at the Spin State of Co 3 + Ions in a CoO 5 Pyramidal Coordination
journal, May 2004


X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of their Constituent Atoms
journal, January 1979

  • Sasaki, Satoshi; Fujino, Kiyoshi; TakÉUchi, Yoshio
  • Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, Vol. 55, Issue 2
  • DOI: 10.2183/pjab.55.43

The crystal structure of cobalt orthophosphate Co3(PO4)2
journal, August 1975


Works referencing / citing this record:

From a Metastable Layer to a Stable Ring: A Kinetic Study for Transformation Reactions of Li 2 Mo 3 TeO 12 to Polyoxometalates
journal, December 2017

  • Oh, Seung-Jin; Lim, Seong-Ji; You, Tae-Soo
  • Chemistry - A European Journal, Vol. 24, Issue 26
  • DOI: 10.1002/chem.201704755

From a Metastable Layer to a Stable Ring: A Kinetic Study for Transformation Reactions of Li 2 Mo 3 TeO 12 to Polyoxometalates
journal, January 2018

  • Oh, Seung-Jin; Lim, Seong-Ji; You, Tae-Soo
  • Chemistry - A European Journal, Vol. 24, Issue 26
  • DOI: 10.1002/chem.201800158