skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries

Abstract

Olivine-type LiCoPO4 is considered a promising high-voltage cathode material for next-generation lithium-ion batteries. However, preparing high-performance LiCoPO4 by a simple approach has been challenging. Herein, we present a facile and rapid (30 min) one-step microwave-assisted solvothermal synthesis route using a 1 : 1 (v/v) water/ethylene glycol (EG) binary solvent mixture and a temperature of 250 °C. Here, the technique delivers high-performance LiCoPO4nanoparticles without additional post-annealing or carbon coating steps. The as-prepared powder consists of single crystalline LiCoPO4 and features a hexagonal platelet-like morphology with dimensions of 700-800 nm × 400-600 nm × 100-220 nm. Selected area electron diffraction (SAED) experiments reveal that the platelets show the smallest dimension along [010], which is the direction of the lithium diffusion pathways in the olivine crystal structure. Furthermore, the results indicate that the EG co-solvent plays an important role in tailoring the particle size, morphology, and crystal orientation of the material. Co L-edge soft X-ray absorption spectroscopy (XAS) of LiCoPO4 are presented for the first time and confirm that the material only consists of Co2+. Benefiting from the unique morphology, which facilitates Li-ion conduction, electrochemical measurements deliver an initial discharge capacity of 137 mA h g-1 at 0.1 C, a remarkably stable capacitymore » retention of 68% after 100 cycles at 0.5 C, and a specific energy density of 658 W h kg-1 based on its capacity and voltage, which is the best performance of LiCoPO4 obtained from microwave-assisted solvothermal synthesis to date.« less

Authors:
 [1];  [1];  [1];  [2];  [3];  [4];  [1];  [1]
  1. Technical University of Munich, Garching (Germany)
  2. BMW AG, München (Germany)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1532177
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 6; Journal Issue: 86; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ludwig, Jennifer, Marino, Cyril, Haering, Dominik, Stinner, Christoph, Nordlund, Dennis, Doeff, Marca M., Gasteiger, Hubert A., and Nilges, Tom. Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries. United States: N. p., 2016. Web. doi:10.1039/c6ra19767a.
Ludwig, Jennifer, Marino, Cyril, Haering, Dominik, Stinner, Christoph, Nordlund, Dennis, Doeff, Marca M., Gasteiger, Hubert A., & Nilges, Tom. Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries. United States. doi:10.1039/c6ra19767a.
Ludwig, Jennifer, Marino, Cyril, Haering, Dominik, Stinner, Christoph, Nordlund, Dennis, Doeff, Marca M., Gasteiger, Hubert A., and Nilges, Tom. Thu . "Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries". United States. doi:10.1039/c6ra19767a. https://www.osti.gov/servlets/purl/1532177.
@article{osti_1532177,
title = {Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries},
author = {Ludwig, Jennifer and Marino, Cyril and Haering, Dominik and Stinner, Christoph and Nordlund, Dennis and Doeff, Marca M. and Gasteiger, Hubert A. and Nilges, Tom},
abstractNote = {Olivine-type LiCoPO4 is considered a promising high-voltage cathode material for next-generation lithium-ion batteries. However, preparing high-performance LiCoPO4 by a simple approach has been challenging. Herein, we present a facile and rapid (30 min) one-step microwave-assisted solvothermal synthesis route using a 1 : 1 (v/v) water/ethylene glycol (EG) binary solvent mixture and a temperature of 250 °C. Here, the technique delivers high-performance LiCoPO4nanoparticles without additional post-annealing or carbon coating steps. The as-prepared powder consists of single crystalline LiCoPO4 and features a hexagonal platelet-like morphology with dimensions of 700-800 nm × 400-600 nm × 100-220 nm. Selected area electron diffraction (SAED) experiments reveal that the platelets show the smallest dimension along [010], which is the direction of the lithium diffusion pathways in the olivine crystal structure. Furthermore, the results indicate that the EG co-solvent plays an important role in tailoring the particle size, morphology, and crystal orientation of the material. Co L-edge soft X-ray absorption spectroscopy (XAS) of LiCoPO4 are presented for the first time and confirm that the material only consists of Co2+. Benefiting from the unique morphology, which facilitates Li-ion conduction, electrochemical measurements deliver an initial discharge capacity of 137 mA h g-1 at 0.1 C, a remarkably stable capacity retention of 68% after 100 cycles at 0.5 C, and a specific energy density of 658 W h kg-1 based on its capacity and voltage, which is the best performance of LiCoPO4 obtained from microwave-assisted solvothermal synthesis to date.},
doi = {10.1039/c6ra19767a},
journal = {RSC Advances},
number = 86,
volume = 6,
place = {United States},
year = {2016},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Projections of the crystal structures of olivine-type LiCoPO4 (space group Pnma) along the three crystallographic axes: (a) [100], (b) [010], and (c) [001]. [CoO6] octahedra are drawn in red, [PO4] tetrahedra in blue, and Li ions in grey.

Save / Share:

Works referenced in this record:

Anodic Decomposition of Trimethylboroxine as Additive for High Voltage Li-Ion Batteries
journal, January 2014

  • Freiberg, A.; Metzger, M.; Haering, D.
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0011501jes

X-ray Absorption Spectroscopic Study on the Electronic Structure of Li 1 - x CoPO 4 Electrodes as 4.8 V Positive Electrodes for Rechargeable Lithium Ion Batteries
journal, June 2005

  • Nakayama, Masanobu; Goto, Satoshi; Uchimoto, Yoshiharu
  • The Journal of Physical Chemistry B, Vol. 109, Issue 22
  • DOI: 10.1021/jp050569s

Kinetic study of the dehydration of lithium sulphate monohydrate
journal, November 1997


Controlled synthesis of plate-like LiCoPO4 nanoparticles via supercritical method and their electrode property
journal, December 2012


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Microwave-Assisted Solvothermal Synthesis of Three Polymorphs of LiCoPO 4 and Their Electrochemical Properties
journal, August 2015


Olivine-Type Nanosheets for Lithium Ion Battery Cathodes
journal, May 2013

  • Rui, Xianhong; Zhao, Xiaoxu; Lu, Ziyang
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn4022263

Structural and Morphological Tuning of LiCoPO4 Materials Synthesized by Solvo-Thermal Methods for Li-Cell Applications
journal, December 2015

  • Manzi, Jessica; Curcio, Mariangela; Brutti, Sergio
  • Nanomaterials, Vol. 5, Issue 4
  • DOI: 10.3390/nano5042212

Controlled synthesis of LiCoPO4 by a solvo-thermal method at 220°C
journal, April 2015


Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge
journal, March 1981


Crystal and magnetic structures of electrochemically delithiated Li1−xCoPO4 phases
journal, January 2009


Electronically conductive phospho-olivines as lithium storage electrodes
journal, September 2002

  • Chung, Sung-Yoon; Bloking, Jason T.; Chiang, Yet-Ming
  • Nature Materials, Vol. 1, Issue 2, p. 123-128
  • DOI: 10.1038/nmat732

The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications
journal, January 2008


Mixed solvent electrolyte for high voltage lithium metal secondary cells
journal, March 1999


Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode
journal, January 2001


Olivine LiCoPO[sub 4] as 4.8 V Electrode Material for Lithium Batteries
journal, January 1999

  • Amine, K.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 4
  • DOI: 10.1149/1.1390994

Electrical conductivity of doped LiCoPO4
journal, August 2006


Experimental visualization of lithium diffusion in LixFePO4
journal, August 2008

  • Nishimura, Shin-ichi; Kobayashi, Genki; Ohoyama, Kenji
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2251

Novel hedgehog-like 5V LiCoPO4 positive electrode material for rechargeable lithium battery
journal, May 2011


Kinetics and mechanism of thermal dehydration of lithium sulfate monohydrate by means of TG and DSC
journal, January 1982


Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes
journal, March 2013


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Olivine-type cathodes
journal, June 2003


High-performance LiMnPO 4 nanorods synthesized via a facile EG-assisted solvothermal approach
journal, January 2015

  • Hong, Ye; Tang, Zilong; Wang, Shitong
  • Journal of Materials Chemistry A, Vol. 3, Issue 19
  • DOI: 10.1039/C5TA01218J

Determination of water content of hygroscopic lithium salts
journal, January 1985


Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis
journal, November 2005

  • Gerbec, Jeffrey A.; Magana, Donny; Washington, Aaron
  • Journal of the American Chemical Society, Vol. 127, Issue 45
  • DOI: 10.1021/ja052463g

High-energy-density LiMn0.7Fe0.3PO4 nanorods synthesized by microwave-assisted solvothermal method
journal, September 2013


Controlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties
journal, February 2014

  • Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Ganbe, Yoshiyuki
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03975

Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries
journal, January 2010

  • Saravanan, Kuppan; Balaya, Palani; Reddy, M. V.
  • Energy & Environmental Science, Vol. 3, Issue 4
  • DOI: 10.1039/b923576k

ELECTROCHEMICAL PROPERIES OF HYDROTHERMALLY SYNTHESIZED LiCoPO<sub>4</sub> AS A HIGH VOLTAGE CATHODE MATERIAL FOR LITHIUM SECONDARY BATTERY
journal, January 2010

  • Kotobuki, Masashi; Mizuno, Yuta; Munakata, Hirokazu
  • Phosphorus Research Bulletin, Vol. 24, Issue 0
  • DOI: 10.3363/prb.24.12

Enhanced electrochemical performance of carbon-coated LiMPO4 (M = Co and Ni) nanoparticles as cathodes for high-voltage lithium-ion battery
journal, February 2016

  • Kumar, P. Ramesh; Madhusudhanrao, V.; B., Nageswararao
  • Journal of Solid State Electrochemistry, Vol. 20, Issue 7
  • DOI: 10.1007/s10008-016-3151-5

Thermal Stability of LiCoPO[sub 4] Cathodes
journal, January 2008

  • Bramnik, Natalia N.; Nikolowski, Kristian; Trots, Dmytro M.
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 6
  • DOI: 10.1149/1.2894902

Investigation of the structural changes in Li1−xFePO4 upon charging by synchrotron radiation techniques
journal, January 2011

  • Wang, Xiao-Jian; Jaye, Cherno; Nam, Kyung-Wan
  • Journal of Materials Chemistry, Vol. 21, Issue 30
  • DOI: 10.1039/c1jm11036e

Lithium Battery Materials Li M PO 4 ( M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior
journal, September 2008

  • Fisher, Craig A. J.; Hart Prieto, Veluz M.; Islam, M. Saiful
  • Chemistry of Materials, Vol. 20, Issue 18
  • DOI: 10.1021/cm801262x

CCCIV.—The hydrates of lithium sulphate and their solubility in water between –16° and +103°
journal, January 1929


Electronic structure of phospho-olivines LixFePO4 (x=0,1) from soft-x-ray-absorption and -emission spectroscopies
journal, November 2005

  • Augustsson, A.; Zhuang, G. V.; Butorin, S. M.
  • The Journal of Chemical Physics, Vol. 123, Issue 18
  • DOI: 10.1063/1.2107387

Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends
journal, June 2013


Hydrothermal synthesis of cathode materials
journal, December 2007


Impact of microwave synthesis conditions on the rechargeable capacity of LiCoPO4 for lithium ion batteries
journal, December 2012

  • Rogers, Reginald E.; Clarke, Garry M.; Matthew, Olivia N.
  • Journal of Applied Electrochemistry, Vol. 43, Issue 3
  • DOI: 10.1007/s10800-012-0517-y

Transport properties of LiCoPO4 and Fe-substituted LiCoPO4
journal, May 2014


Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Microwave chemistry for inorganic nanomaterials synthesis
journal, January 2010

  • Bilecka, Idalia; Niederberger, Markus
  • Nanoscale, Vol. 2, Issue 8
  • DOI: 10.1039/b9nr00377k

Review of 5-V electrodes for Li-ion batteries: status and trends
journal, May 2013


Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems
journal, January 2015

  • Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 46
  • DOI: 10.1039/C5CP05936D

Morphology-controllable solvothermal synthesis of nanoscale LiFePO4 in a binary solvent
journal, March 2012


Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries
journal, July 2001


Dimensionally Modulated, Single-Crystalline LiMPO 4 (M= Mn, Fe, Co, and Ni) with Nano-Thumblike Shapes for High-Power Energy Storage
journal, February 2009

  • Murugan, A. Vadivel; Muraliganth, T.; Ferreira, P. J.
  • Inorganic Chemistry, Vol. 48, Issue 3
  • DOI: 10.1021/ic8015723

Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour
journal, January 2008

  • Fisher, Craig A. J.; Islam, M. Saiful
  • Journal of Materials Chemistry, Vol. 18, Issue 11
  • DOI: 10.1039/b715935h

Hydrothermal synthesis of carbon-coated LiCoPO4 cathode material from various Co sources
journal, January 2013

  • Kotobuki, Masashi
  • International Journal of Energy and Environmental Engineering, Vol. 4, Issue 1
  • DOI: 10.1186/2251-6832-4-25

Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries
journal, March 2012

  • Devaraju, Murukanahally Kempaiah; Honma, Itaru
  • Advanced Energy Materials, Vol. 2, Issue 3
  • DOI: 10.1002/aenm.201100642

Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M=Mn, Fe, and Co) Cathodes
journal, January 2009

  • Vadivel Murugan, A.; Muraliganth, T.; Manthiram, A.
  • Journal of The Electrochemical Society, Vol. 156, Issue 2, p. A79-A83
  • DOI: 10.1149/1.3028304

Electronic Structure of CoO Nanocrystals and a Single Crystal Probed by Resonant X-ray Emission Spectroscopy
journal, July 2012

  • van Schooneveld, Matti M.; Kurian, Reshmi; Juhin, Amélie
  • The Journal of Physical Chemistry C, Vol. 116, Issue 29
  • DOI: 10.1021/jp302847h

Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4
journal, January 2007


Co Polyoxometalates and a Co 3 O 4 Thin Film Investigated by L-Edge X-ray Absorption Spectroscopy
journal, February 2015

  • Hibberd, Amber M.; Doan, Hoang Q.; Glass, Elliot N.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 8
  • DOI: 10.1021/jp5124037

Investigation on graphitic carbon foams – LiNiyPO4 (y = 0.8–1.0) composites
journal, September 2012


Mn and Co Charge and Spin Evolutions in LaMn 1– x Co x O 3 Nanoparticles
journal, April 2016

  • Ghiasi, Mahnaz; Delgado-Jaime, Mario Ulises; Malekzadeh, Azim
  • The Journal of Physical Chemistry C, Vol. 120, Issue 15
  • DOI: 10.1021/acs.jpcc.6b00949

Supercritical Fluid Synthesis of LiCoPO4 Nanoparticles and Their Application to Lithium Ion Battery
journal, May 2014


Recent progress in high-voltage lithium ion batteries
journal, September 2013


Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries
journal, January 2011

  • Liu, Jun; Conry, Thomas E.; Song, Xiangyun
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c1jm10793c

Positive Electrode Materials for Li-Ion and Li-Batteries
journal, February 2010

  • Ellis, Brian L.; Lee, Kyu Tae; Nazar, Linda F.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902696j

Ni3+/Ni2+ redox potential in LiNiPO4
journal, March 2005


Ordered Olivine-Type Lithium-Cobalt and Lithium-Nickel Phosphates Prepared by a New Precursor Method
journal, July 2010

  • Koleva, Violeta; Zhecheva, Ekaterina; Stoyanova, Radostina
  • European Journal of Inorganic Chemistry, Vol. 2010, Issue 26
  • DOI: 10.1002/ejic.201000400

Ionic transport properties of LiCoPO4 cathode material
journal, September 2011


Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithium ion batteries
journal, February 2005


Improved cycle life of Fe-substituted LiCoPO4
journal, October 2011


A correction for powder diffraction peak asymmetry due to axial divergence
journal, December 1994

  • Finger, L. W.; Cox, D. E.; Jephcoat, A. P.
  • Journal of Applied Crystallography, Vol. 27, Issue 6
  • DOI: 10.1107/S0021889894004218

LiCoPO4-based ternary composite thin-film electrode for lithium secondary battery
journal, July 2006


Electrochemical and structural study of LiCoPO4-based electrodes
journal, February 2004

  • Bramnik, NataliaN.; Bramnik, KirillG.; Buhrmester, Thorsten
  • Journal of Solid State Electrochemistry, Vol. 8, Issue 8
  • DOI: 10.1007/s10008-004-0497-x

Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling
journal, September 2006


A general solution-chemistry route to the synthesis LiMPO4 (M=Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries
journal, November 2011


Phase Transitions Occurring upon Lithium Insertion−Extraction of LiCoPO 4
journal, February 2007

  • Bramnik, Natalia N.; Nikolowski, Kristian; Baehtz, Carsten
  • Chemistry of Materials, Vol. 19, Issue 4
  • DOI: 10.1021/cm062246u

Olivine LiFePO 4 : development and future
journal, January 2011

  • Wang, Yonggang; He, Ping; Zhou, Haoshen
  • Energy Environ. Sci., Vol. 4, Issue 3
  • DOI: 10.1039/C0EE00176G

Characterization of phospho-olivines as materials for Li-ion cell cathodes
journal, January 2002


Crystallographic Computing System JANA2006: General features
journal, January 2014

  • Petříček, Václav; Dušek, Michal; Palatinus, Lukáš
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2014-1737

E.s.d.'s and estimated probable error obtained in Rietveld refinements with local correlations
journal, February 1991


Controllable synthesis, morphology evolution and electrochemical properties of LiFePO 4 cathode materials for Li-ion batteries
journal, January 2014

  • Song, Jianjun; Wang, Lin; Shao, Guangjie
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 17
  • DOI: 10.1039/C4CP00251B

Structure and performance of LiFePO4 cathode materials: A review
journal, March 2011


Effect of oxygen partial pressure on the discharge capacity of LiCoPO4
journal, June 2005


    Works referencing / citing this record:

    Enhanced Cycling Performance of Magnesium‐Doped Lithium Cobalt Phosphate
    journal, September 2019

    • Kim, Eun Jeong; Miller, David N.; Irvine, John T. S.
    • ChemElectroChem, Vol. 6, Issue 18
    • DOI: 10.1002/celc.201901372

    Facile Synthesis of Flock‐Like V 2 O 3 /C with Improved Electrochemical Performance as an Anode Material for Li‐Ion Batteries
    journal, December 2019


    Solvothermal water-diethylene glycol synthesis of LiCoPO 4 and effects of surface treatments on lithium battery performance
    journal, January 2019

    • Zhang, Min; Garcia-Araez, Nuria; Hector, Andrew L.
    • RSC Advances, Vol. 9, Issue 2
    • DOI: 10.1039/c8ra08785g

    Understanding and development of olivine LiCoPO 4 cathode materials for lithium-ion batteries
    journal, January 2018

    • Zhang, Min; Garcia-Araez, Nuria; Hector, Andrew L.
    • Journal of Materials Chemistry A, Vol. 6, Issue 30
    • DOI: 10.1039/c8ta04063j

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.