DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Noncollinear spin structure in F e 3 + x C o 3 x T i 2 ( x = 0 , 2 , 3 ) from neutron diffraction

Abstract

Neutron powder diffraction has been used to investigate the spin structure of the hard-magnetic alloy Fe3+xCo3–xTi2 (x = 0,2,3). The materials are produced by rapid quenching from the melt, they possess a hexagonal crystal structure, and they are nanocrystalline with crystallite sizes D of the order of 40 nm. Projections of the magnetic moment onto both the crystalline c axis and the basal plane were observed. The corresponding misalignment angle exhibits a nonlinear decrease with x, which we explain as a micromagnetic effect caused by Fe-Co site disorder. As a result, the underlying physics is a special kind of random-anisotropy magnetism that leads to the prediction of 1/D1/4 power-law dependence of the misalignment angle on the crystallite size.

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [2];  [1];  [1]
  1. Univ. of Nebraska, Lincoln, NE (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1531241
Alternate Identifier(s):
OSTI ID: 1524474
Grant/Contract Number:  
AC05-00OR22725; FG02-04ER46152
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 3; Journal Issue: 6; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE

Citation Formats

Wang, Haohan, Balasubramanian, Balamurugan, Pahari, Rabindra, Skomski, Ralph, Liu, Yaohua, Huq, Ashfia, Sellmyer, D. J., and Xu, Xiaoshan. Noncollinear spin structure in Fe3+xCo3–xTi2 ( x=0,2,3 ) from neutron diffraction. United States: N. p., 2019. Web. doi:10.1103/PhysRevMaterials.3.064403.
Wang, Haohan, Balasubramanian, Balamurugan, Pahari, Rabindra, Skomski, Ralph, Liu, Yaohua, Huq, Ashfia, Sellmyer, D. J., & Xu, Xiaoshan. Noncollinear spin structure in Fe3+xCo3–xTi2 ( x=0,2,3 ) from neutron diffraction. United States. https://doi.org/10.1103/PhysRevMaterials.3.064403
Wang, Haohan, Balasubramanian, Balamurugan, Pahari, Rabindra, Skomski, Ralph, Liu, Yaohua, Huq, Ashfia, Sellmyer, D. J., and Xu, Xiaoshan. Tue . "Noncollinear spin structure in Fe3+xCo3–xTi2 ( x=0,2,3 ) from neutron diffraction". United States. https://doi.org/10.1103/PhysRevMaterials.3.064403. https://www.osti.gov/servlets/purl/1531241.
@article{osti_1531241,
title = {Noncollinear spin structure in Fe3+xCo3–xTi2 ( x=0,2,3 ) from neutron diffraction},
author = {Wang, Haohan and Balasubramanian, Balamurugan and Pahari, Rabindra and Skomski, Ralph and Liu, Yaohua and Huq, Ashfia and Sellmyer, D. J. and Xu, Xiaoshan},
abstractNote = {Neutron powder diffraction has been used to investigate the spin structure of the hard-magnetic alloy Fe3+xCo3–xTi2 (x = 0,2,3). The materials are produced by rapid quenching from the melt, they possess a hexagonal crystal structure, and they are nanocrystalline with crystallite sizes D of the order of 40 nm. Projections of the magnetic moment onto both the crystalline c axis and the basal plane were observed. The corresponding misalignment angle exhibits a nonlinear decrease with x, which we explain as a micromagnetic effect caused by Fe-Co site disorder. As a result, the underlying physics is a special kind of random-anisotropy magnetism that leads to the prediction of 1/D1/4 power-law dependence of the misalignment angle on the crystallite size.},
doi = {10.1103/PhysRevMaterials.3.064403},
journal = {Physical Review Materials},
number = 6,
volume = 3,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Rare-earth magnets in present production and development
journal, January 1978


Rare earth-cobalt permanent magnets
journal, November 1991

  • Strnat, Karl J.; Strnat, Reinhold M. W.
  • Journal of Magnetism and Magnetic Materials, Vol. 100, Issue 1-3
  • DOI: 10.1016/0304-8853(91)90811-N

Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient
journal, December 2010

  • Gutfleisch, Oliver; Willard, Matthew A.; Brück, Ekkes
  • Advanced Materials, Vol. 23, Issue 7
  • DOI: 10.1002/adma.201002180

Magnetic anisotropy — How much is enough for a permanent magnet?
journal, February 2016


Current progress and future challenges in rare-earth-free permanent magnets
journal, October 2018


RETM 5 and RE 2 TM 1 7 permanent magnets development
journal, March 1988

  • Kumar, Kaplesh
  • Journal of Applied Physics, Vol. 63, Issue 6
  • DOI: 10.1063/1.341084

Neutron determination of the magnetic order and site preference in Er 2 (Co x Fe 1− x ) 17
journal, April 1988

  • Kumar, R.; Yelon, W. B.; Fuerst, C. D.
  • Journal of Applied Physics, Vol. 63, Issue 8
  • DOI: 10.1063/1.340648

R 2 Fe 14 B materials: Intrinsic properties and technological aspects
journal, October 1991


Giant energy product in nanostructured two-phase magnets
journal, December 1993


Colloquium : Opportunities in nanomagnetism
journal, January 2006


Materials science: The pull of stronger magnets
journal, April 2011


Hard Magnetic Materials: A Perspective
journal, December 2011


New permanent magnets; manganese compounds
journal, January 2014


Large moments in bcc Fe x Co y Mn z ternary alloy thin films
journal, February 2018

  • Snow, R. J.; Bhatkar, H.; N'Diaye, A. T.
  • Applied Physics Letters, Vol. 112, Issue 7
  • DOI: 10.1063/1.5006347

De Magnete et Meteorite: Cosmically Motivated Materials
journal, January 2014


Novel Nanostructured Rare-Earth-Free Magnetic Materials with High Energy Products
journal, August 2013

  • Balasubramanian, Balamurugan; Das, Bhaskar; Skomski, Ralph
  • Advanced Materials, Vol. 25, Issue 42
  • DOI: 10.1002/adma.201302704

Magnetic Properties of an Iron—Nickel Single Crystal Ordered by Neutron Bombardment
journal, March 1964

  • Néel, L.; Pauleve, J.; Pauthenet, R.
  • Journal of Applied Physics, Vol. 35, Issue 3
  • DOI: 10.1063/1.1713516

Accelerated discovery of new magnets in the Heusler alloy family
journal, April 2017


Hf–Co and Zr–Co alloys for rare-earth-free permanent magnets
journal, January 2014


Crystal structure and magnetic properties of new Fe 3 Co 3 X 2 ( X   =  Ti, Nb) intermetallic compounds
journal, March 2016

  • Zhang, Jie; Nguyen, Manh Cuong; Balasubramanian, Balamurugan
  • Journal of Physics D: Applied Physics, Vol. 49, Issue 17
  • DOI: 10.1088/0022-3727/49/17/175002

Anti-site mixing and magnetic properties of Fe 3 Co 3 Nb 2 studied via neutron powder diffraction
journal, November 2016


Structure and magnetism of new rare-earth-free intermetallic compounds: Fe 3+x Co 3−x Ti 2 (0 ≤ x ≤ 3)
journal, November 2016

  • Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong
  • APL Materials, Vol. 4, Issue 11
  • DOI: 10.1063/1.4968517

Nanomagnetics
journal, May 2003


Analysis of the small-angle neutron scattering of nanocrystalline ferromagnets using a micromagnetics model
journal, May 2001


Magnetic-field-dependent small-angle neutron scattering on random anisotropy ferromagnets
journal, May 2008


Magnetic small-angle neutron scattering of bulk ferromagnets
journal, September 2014


High-coercivity magnetism in nanostructures with strong easy-plane anisotropy
journal, April 2016

  • Balasubramanian, Balamurugan; Manchanda, Priyanka; Skomski, Ralph
  • Applied Physics Letters, Vol. 108, Issue 15
  • DOI: 10.1063/1.4945987

First‐order field‐induced magnetization transitions in single‐crystal Nd 2 Fe 1 4 B
journal, July 1987

  • Bolzoni, F.; Moze, O.; Pareti, L.
  • Journal of Applied Physics, Vol. 62, Issue 2
  • DOI: 10.1063/1.339789

Initial magnetization, remanence, and coercivity of the random anisotropy amorphous ferromagnet
journal, July 1977


Phase-Transition Behavior in a Random-Anisotropy System
journal, September 1986


Nanocrystalline soft magnetic materials
journal, July 1992


Neutron Diffraction Study of the Structures and Magnetic Properties of Manganese Bismuthide
journal, November 1956


An X-ray and neutron diffraction investigation of the magnetic phase Al 0.89 Mn 1.11
journal, August 1963


The Magnetic and Crystallographic Properties of MnBi Studied by Neutron Diffraction.
journal, January 1967


Neutron diffraction study of hard magnetic alloy MnAlC
journal, March 1984

  • Yang, Ying‐chang; Ho, Wen‐wang; Lin, Chin
  • Journal of Applied Physics, Vol. 55, Issue 6
  • DOI: 10.1063/1.333563

Development of MnBi permanent magnet: Neutron diffraction of MnBi powder
journal, May 2014

  • Cui, J.; Choi, J. P.; Li, G.
  • Journal of Applied Physics, Vol. 115, Issue 17
  • DOI: 10.1063/1.4867230

Neutron Diffraction Study of the Magnetic Behavior of Gadolinium
journal, January 1968


Polarized neutron study of the compounds Y 2 Fe 1 4 B and Nd 2 Fe 1 4 B
journal, April 1985

  • Givord, D.; Li, H. S.; Tasset, F.
  • Journal of Applied Physics, Vol. 57, Issue 8
  • DOI: 10.1063/1.334631

Crystal and magnetic structure of Pr 2 Fe 1 4 B and Dy 2 Fe 1 4 B
journal, March 1985

  • Herbst, J. F.; Yelon, W. B.
  • Journal of Applied Physics, Vol. 57, Issue 6
  • DOI: 10.1063/1.334342

A profile refinement method for nuclear and magnetic structures
journal, June 1969


Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


Strain development during the phase transition of La(Fe,Mn,Si) 13 H z
journal, August 2016

  • Neves Bez, Henrique; Nielsen, Kaspar K.; Smith, Anders
  • Applied Physics Letters, Vol. 109, Issue 5
  • DOI: 10.1063/1.4960358