skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis

Abstract

Water electrolysis can delay the operation of capacitive deionization (CDI) and membrane CDI (MCDI). Here, we investigate the overpotential limits of CDI and MCDI (OP-MCDI) for water electrolysis and desalination performance. For sodium chloride concentrations of ~28,460 ppm, MCDI with mesoporous carbon electrodes could be operated at up to 2.4 V without water electrolysis, and the salt-adsorption capacity of the OP-MCDI system at 2.4 V was about two times greater than that of the MCDI at 1.2 V. This study offers an opportunity to extend the applicability of conventional CDI and MCDI systems for desalination of low-salinity solutions.

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [5];  [6];  [6];  [6]; ORCiD logo [7]
  1. Georgia Inst. of Technology, Atlanta, GA (United States); Louisiana State Univ., Baton Rouge, LA (United States)
  2. Georgia Inst. of Technology, Atlanta, GA (United States); Tianjin Polytechnic Univ., (China); Chinese Academy of Sciences (CAS), Beijing (China)
  3. Chinese Academy of Sciences (CAS), Beijing (China)
  4. Indian Institute of Technology Gandhinagar, Gujarat (India)
  5. Georgia Inst. of Technology, Atlanta, GA (United States)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. Georgia Inst. of Technology, Atlanta, GA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1531237
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Separation Science and Technology
Additional Journal Information:
Journal Volume: 54; Journal Issue: 13; Journal ID: ISSN 0149-6395
Publisher:
Taylor & Francis
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrosorption; Capacitive deionization; Membrane capacitive deionization; Desalination; Overpotential membrane capacitive deionization

Citation Formats

Kim, Yong Ha, Tang, K., Chang, J., Sharma, K., Yiacoumi, S., Mayes, R. T., Bilheux, H. Z., Santodonato, L. J., and Tsouris, C. Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis. United States: N. p., 2019. Web. doi:10.1080/01496395.2019.1608243.
Kim, Yong Ha, Tang, K., Chang, J., Sharma, K., Yiacoumi, S., Mayes, R. T., Bilheux, H. Z., Santodonato, L. J., & Tsouris, C. Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis. United States. doi:10.1080/01496395.2019.1608243.
Kim, Yong Ha, Tang, K., Chang, J., Sharma, K., Yiacoumi, S., Mayes, R. T., Bilheux, H. Z., Santodonato, L. J., and Tsouris, C. Wed . "Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis". United States. doi:10.1080/01496395.2019.1608243. https://www.osti.gov/servlets/purl/1531237.
@article{osti_1531237,
title = {Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis},
author = {Kim, Yong Ha and Tang, K. and Chang, J. and Sharma, K. and Yiacoumi, S. and Mayes, R. T. and Bilheux, H. Z. and Santodonato, L. J. and Tsouris, C.},
abstractNote = {Water electrolysis can delay the operation of capacitive deionization (CDI) and membrane CDI (MCDI). Here, we investigate the overpotential limits of CDI and MCDI (OP-MCDI) for water electrolysis and desalination performance. For sodium chloride concentrations of ~28,460 ppm, MCDI with mesoporous carbon electrodes could be operated at up to 2.4 V without water electrolysis, and the salt-adsorption capacity of the OP-MCDI system at 2.4 V was about two times greater than that of the MCDI at 1.2 V. This study offers an opportunity to extend the applicability of conventional CDI and MCDI systems for desalination of low-salinity solutions.},
doi = {10.1080/01496395.2019.1608243},
journal = {Separation Science and Technology},
number = 13,
volume = 54,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Water scarcity: Fact or fiction?
journal, February 2006


A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index
journal, April 2010

  • Vicente-Serrano, Sergio M.; Beguería, Santiago; López-Moreno, Juan I.
  • Journal of Climate, Vol. 23, Issue 7
  • DOI: 10.1175/2009JCLI2909.1

Reverse Osmosis Biofilm Dispersal by Osmotic Back-Flushing: Cleaning via Substratum Perforation
journal, December 2013

  • Bar-Zeev, Edo; Elimelech, Menachem
  • Environmental Science & Technology Letters, Vol. 1, Issue 2
  • DOI: 10.1021/ez400183d

Energy Issues in Desalination Processes
journal, November 2008

  • Semiat, Raphael
  • Environmental Science & Technology, Vol. 42, Issue 22
  • DOI: 10.1021/es801330u

Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions
journal, July 2014

  • Sharma, K.; Kim, Y. -H.; Gabitto, J.
  • Langmuir, Vol. 31, Issue 3
  • DOI: 10.1021/la5043102

Modular Chemical Process Intensification: A Review
journal, June 2017


Capacitive Deionization Technology™: An alternative desalination solution
journal, November 2005


Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane
journal, January 2010


Mesoporous Carbon for Capacitive Deionization of Saline Water
journal, December 2011

  • Tsouris, C.; Mayes, R.; Kiggans, J.
  • Environmental Science & Technology, Vol. 45, Issue 23
  • DOI: 10.1021/es201551e

3D porous graphene with ultrahigh surface area for microscale capacitive deionization
journal, January 2015


Desalination of a thermal power plant wastewater by membrane capacitive deionization
journal, September 2006


Capacitive Deionization of NaCl and NaNO[sub 3] Solutions with Carbon Aerogel Electrodes
journal, January 1996

  • Farmer, Joseph C.
  • Journal of The Electrochemical Society, Vol. 143, Issue 1
  • DOI: 10.1149/1.1836402

Electrosorption behavior of graphene in NaCl solutions
journal, January 2009

  • Li, Haibo; Lu, Ting; Pan, Likun
  • Journal of Materials Chemistry, Vol. 19, Issue 37
  • DOI: 10.1039/b907703k

Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization
journal, September 2010


Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization
journal, May 2016


Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying
journal, October 2007


"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Application of Capacitive Deionisation in water desalination: A review
journal, June 2014


The bubble coverage of gas-evolving electrodes in stagnant electrolytes
journal, March 2005


Review on the science and technology of water desalination by capacitive deionization
journal, October 2013


Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V
journal, December 2016


Enhanced capacitive deionization of graphene/mesoporous carbon composites
journal, January 2012

  • Zhang, Dengsong; Wen, Xiaoru; Shi, Liyi
  • Nanoscale, Vol. 4, Issue 17
  • DOI: 10.1039/c2nr31154b

Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles
journal, February 2019


Modeling of advanced alkaline electrolyzers: a system simulation approach
journal, January 2003


Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging
journal, October 2015

  • Michalak, Barbara; Sommer, Heino; Mannes, David
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15627

Neutron imaging of ion transport in mesoporous carbon materials
journal, January 2013

  • Sharma, Ketki; Bilheux, Hassina Z.; Walker, Lakeisha M. H.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 28
  • DOI: 10.1039/c3cp51310f

Analysis and simulation of a blue energy cycle
journal, June 2016


Neutron scattering lengths and cross sections
journal, January 1992


iMARS (iMaging Analysis Research Software)
journal, January 2015


A novel approach to determine post mortem interval using neutron radiography
journal, June 2015


Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process
journal, August 2010


Theory of pH changes in water desalination by capacitive deionization
journal, August 2017


On the solubility of sodium chloride in water
journal, December 1982


Current status of ion exchange membranes for power generation from salinity gradients
journal, July 2008


Attractive forces in microporous carbon electrodes for capacitive deionization
journal, February 2014

  • Biesheuvel, P. M.; Porada, S.; Levi, M.
  • Journal of Solid State Electrochemistry, Vol. 18, Issue 5
  • DOI: 10.1007/s10008-014-2383-5

Parametric study for saline water electrolysis: Part II—Chlorine evolution, selectivity and determination
journal, July 1993


Water splitting in ion exchange membranes
journal, March 1985


On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport
journal, March 2010

  • Długołęcki, Piotr; Ogonowski, Piotr; Metz, Sybrand J.
  • Journal of Membrane Science, Vol. 349, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.11.069

Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels
journal, July 2002

  • Gabelich, Christopher J.; Tran, Tri D.; Suffet, I. H. “Mel”
  • Environmental Science & Technology, Vol. 36, Issue 13
  • DOI: 10.1021/es0112745

Combinatorial discovery of bifunctional oxygen reduction — water oxidation electrocatalysts for regenerative fuel cells
journal, June 2001


Electrocatalysis of proton-coupled electron-transfer reactions at glassy carbon electrodes
journal, April 1985

  • Cabaniss, George E.; Diamantis, A. A.; Murphy, W. Rorer
  • Journal of the American Chemical Society, Vol. 107, Issue 7
  • DOI: 10.1021/ja00293a007

Elucidating Proton Involvement in the Rate-Determining Step for Pt/Pd-Based and Non-Precious-Metal Oxygen Reduction Reaction Catalysts Using the Kinetic Isotope Effect
journal, August 2016

  • Tse, Edmund C. M.; Varnell, Jason A.; Hoang, Thao T. H.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 18
  • DOI: 10.1021/acs.jpclett.6b01235

Kinetic Isotope Effect in the Hydrogenation and Deuteration of Graphene
journal, November 2012

  • Paris, Alessio; Verbitskiy, Nikolay; Nefedov, Alexei
  • Advanced Functional Materials, Vol. 23, Issue 13
  • DOI: 10.1002/adfm.201202355