skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO2 absorption from simulated flue gas in a bubble column

Abstract

Carbon dioxide (CO2) absorption from power plant generated flue gas is studied for CO2 emissions reduction. Amino acid alkaline solvents have the potential to reduce the energy required for solvent regeneration. Here, we focus on CO2 absorption by amino acid alkaline solvents in a bubble column. Important parameters characterizing the reactor, e.g., bubble size, liquid-phase dispersion coefficient, and gas holdup, are experimentally determined. A theoretical model based upon transient mass and energy balances for the chemical species involved is presented. Simulation results are compared to experimental data. The model can be used to predict, optimize, and control CO2 absorption in industrial-scale applications.

Authors:
 [1];  [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [3]; ORCiD logo [4]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Prairie View A&M Univ., Prairie View, TX (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Georgia Inst. of Technology, Atlanta, GA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1531235
Grant/Contract Number:  
AC05-00OR22725; TCF-17-13299
Resource Type:
Accepted Manuscript
Journal Name:
Separation Science and Technology
Additional Journal Information:
Journal Volume: 54; Journal Issue: 13; Journal ID: ISSN 0149-6395
Publisher:
Taylor & Francis
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; CO2 absorption; CO2 capture; amino acid alkaline solvents; bubble column

Citation Formats

Kasturi, Abishek, Ladshaw, Austin, Yiacoumi, Sotira, Gabitto, Jorge, Garrabrant, Kathleen, Custelcean, Radu, and Tsouris, Costas. CO2 absorption from simulated flue gas in a bubble column. United States: N. p., 2019. Web. doi:10.1080/01496395.2019.1617745.
Kasturi, Abishek, Ladshaw, Austin, Yiacoumi, Sotira, Gabitto, Jorge, Garrabrant, Kathleen, Custelcean, Radu, & Tsouris, Costas. CO2 absorption from simulated flue gas in a bubble column. United States. doi:10.1080/01496395.2019.1617745.
Kasturi, Abishek, Ladshaw, Austin, Yiacoumi, Sotira, Gabitto, Jorge, Garrabrant, Kathleen, Custelcean, Radu, and Tsouris, Costas. Wed . "CO2 absorption from simulated flue gas in a bubble column". United States. doi:10.1080/01496395.2019.1617745. https://www.osti.gov/servlets/purl/1531235.
@article{osti_1531235,
title = {CO2 absorption from simulated flue gas in a bubble column},
author = {Kasturi, Abishek and Ladshaw, Austin and Yiacoumi, Sotira and Gabitto, Jorge and Garrabrant, Kathleen and Custelcean, Radu and Tsouris, Costas},
abstractNote = {Carbon dioxide (CO2) absorption from power plant generated flue gas is studied for CO2 emissions reduction. Amino acid alkaline solvents have the potential to reduce the energy required for solvent regeneration. Here, we focus on CO2 absorption by amino acid alkaline solvents in a bubble column. Important parameters characterizing the reactor, e.g., bubble size, liquid-phase dispersion coefficient, and gas holdup, are experimentally determined. A theoretical model based upon transient mass and energy balances for the chemical species involved is presented. Simulation results are compared to experimental data. The model can be used to predict, optimize, and control CO2 absorption in industrial-scale applications.},
doi = {10.1080/01496395.2019.1617745},
journal = {Separation Science and Technology},
number = 13,
volume = 54,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Gas—liquid mass transfer with parallel reversible reactions—III. Absorption of CO2 into solutions of blends of amines
journal, January 1989


Reaction rate of CO2 in aqueous MEA-AMP solution: Experiment and modeling
journal, February 2009


Carbon Dioxide Absorption Modeling for Off-Gas Treatment in the Nuclear Fuel Cycle
journal, October 2018

  • Gabitto, Jorge; Tsouris, Costas
  • International Journal of Chemical Engineering, Vol. 2018
  • DOI: 10.1155/2018/3158147

Kinetics of the Reversible Reaction of CO 2 (aq) and HCO 3 with Sarcosine Salt in Aqueous Solution
journal, October 2012

  • Xiang, Qunyang; Fang, Mengxiang; Yu, Hai
  • The Journal of Physical Chemistry A, Vol. 116, Issue 42
  • DOI: 10.1021/jp305715q

Amino Acids as Carbon Capture Solvents: Chemical Kinetics and Mechanism of the Glycine + CO 2 Reaction
journal, June 2013

  • Guo, Dongfang; Thee, Hendy; Tan, Chun Y.
  • Energy & Fuels, Vol. 27, Issue 7
  • DOI: 10.1021/ef400413r

Reaction kinetics of carbon dioxide with aqueous solutions of l -Arginine, Glycine & Sarcosine using the stopped flow technique
journal, August 2017

  • Mahmud, Nafis; Benamor, Abdelbaki; Nasser, Mustafa S.
  • International Journal of Greenhouse Gas Control, Vol. 63
  • DOI: 10.1016/j.ijggc.2017.05.012

Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power
journal, May 2018


Simulation of carbon dioxide absorption by amino acids in two-phase batch and bubble column reactors
journal, February 2019


Characterization of potassium glycinate for carbon dioxide absorption purposes
journal, December 2007

  • Portugal, A. F.; Derks, P. W. J.; Versteeg, G. F.
  • Chemical Engineering Science, Vol. 62, Issue 23
  • DOI: 10.1016/j.ces.2007.07.068

Kinetics of CO 2 Absorption in Aqueous Sarcosine Salt Solutions: Influence of Concentration, Temperature, and CO 2 Loading
journal, October 2010

  • Simons, Katja; Brilman, Wim (D. W. F.); Mengers, Harro
  • Industrial & Engineering Chemistry Research, Vol. 49, Issue 20
  • DOI: 10.1021/ie100241y

Principles of Gas Absorption.
journal, December 1924

  • Lewis, W. K.; Whitman, W. G.
  • Industrial & Engineering Chemistry, Vol. 16, Issue 12
  • DOI: 10.1021/ie50180a002

Bubble Size, Interfacial Area, and Liquid-Phase Mass Transfer Coefficient in Bubble Columns
journal, January 1974

  • Akita, Kiyomi; Yoshida, Fumitake
  • Industrial & Engineering Chemistry Process Design and Development, Vol. 13, Issue 1
  • DOI: 10.1021/i260049a016

Kinetics of gas-liquid reactions part I. General theory
journal, January 1948

  • van Krevelen, D. W.; Hoftijzer, P. J.
  • Recueil des Travaux Chimiques des Pays-Bas, Vol. 67, Issue 7
  • DOI: 10.1002/recl.19480670708

Liquid-phase mixing in bubble columns: Effect of liquid properties
journal, January 1974


Mass transfer and bubble size in a bubble column under pressure
journal, May 1994

  • Wilkinson, Peter M.; Haringa, Herman; Van Dierendonck, Laurent L.
  • Chemical Engineering Science, Vol. 49, Issue 9
  • DOI: 10.1016/0009-2509(93)E0022-5

Gas Holdup, Axial Dispersion, and Mass Transfer Studies in Bubble Columns
journal, October 2012

  • Shah, Mayank; Kiss, Anton A.; Zondervan, Edwin
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 43
  • DOI: 10.1021/ie301227t

Mass-transfer effects on droplet phenomena and extraction column hydrodynamics revisited
journal, January 1993


A mechanistic modeling framework for gas-phase adsorption kinetics and fixed-bed transport
journal, July 2017

  • Ladshaw, Austin P.; Yiacoumi, Sotira; Lin, Ronghong
  • AIChE Journal, Vol. 63, Issue 11
  • DOI: 10.1002/aic.15855

    Works referencing / citing this record:

    A mechanistic modeling framework for gas-phase adsorption kinetics and fixed-bed transport
    journal, July 2017

    • Ladshaw, Austin P.; Yiacoumi, Sotira; Lin, Ronghong
    • AIChE Journal, Vol. 63, Issue 11
    • DOI: 10.1002/aic.15855

    Kinetics of gas-liquid reactions part I. General theory
    journal, January 1948

    • van Krevelen, D. W.; Hoftijzer, P. J.
    • Recueil des Travaux Chimiques des Pays-Bas, Vol. 67, Issue 7
    • DOI: 10.1002/recl.19480670708

    Gas—liquid mass transfer with parallel reversible reactions—III. Absorption of CO2 into solutions of blends of amines
    journal, January 1989


    Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine
    journal, April 1995

    • Hagewiesche, Daniel P.; Ashour, Sami S.; Al-Ghawas, Hani A.
    • Chemical Engineering Science, Vol. 50, Issue 7
    • DOI: 10.1016/0009-2509(94)00489-e

    Liquid-phase mixing in bubble columns: Effect of liquid properties
    journal, January 1974


    Characterization of potassium glycinate for carbon dioxide absorption purposes
    journal, December 2007

    • Portugal, A. F.; Derks, P. W. J.; Versteeg, G. F.
    • Chemical Engineering Science, Vol. 62, Issue 23
    • DOI: 10.1016/j.ces.2007.07.068

    Reaction rate of CO2 in aqueous MEA-AMP solution: Experiment and modeling
    journal, February 2009


    Reaction kinetics of carbon dioxide with aqueous solutions of l -Arginine, Glycine & Sarcosine using the stopped flow technique
    journal, August 2017

    • Mahmud, Nafis; Benamor, Abdelbaki; Nasser, Mustafa S.
    • International Journal of Greenhouse Gas Control, Vol. 63
    • DOI: 10.1016/j.ijggc.2017.05.012

    Amino Acids as Carbon Capture Solvents: Chemical Kinetics and Mechanism of the Glycine + CO 2 Reaction
    journal, June 2013

    • Guo, Dongfang; Thee, Hendy; Tan, Chun Y.
    • Energy & Fuels, Vol. 27, Issue 7
    • DOI: 10.1021/ef400413r

    Bubble Size, Interfacial Area, and Liquid-Phase Mass Transfer Coefficient in Bubble Columns
    journal, January 1974

    • Akita, Kiyomi; Yoshida, Fumitake
    • Industrial & Engineering Chemistry Process Design and Development, Vol. 13, Issue 1
    • DOI: 10.1021/i260049a016

    Kinetics of CO 2 Absorption in Aqueous Sarcosine Salt Solutions: Influence of Concentration, Temperature, and CO 2 Loading
    journal, October 2010

    • Simons, Katja; Brilman, Wim (D. W. F.); Mengers, Harro
    • Industrial & Engineering Chemistry Research, Vol. 49, Issue 20
    • DOI: 10.1021/ie100241y

    Gas Holdup, Axial Dispersion, and Mass Transfer Studies in Bubble Columns
    journal, October 2012

    • Shah, Mayank; Kiss, Anton A.; Zondervan, Edwin
    • Industrial & Engineering Chemistry Research, Vol. 51, Issue 43
    • DOI: 10.1021/ie301227t

    Principles of Gas Absorption.
    journal, December 1924

    • Lewis, W. K.; Whitman, W. G.
    • Industrial & Engineering Chemistry, Vol. 16, Issue 12
    • DOI: 10.1021/ie50180a002

    Kinetics of the Reversible Reaction of CO 2 (aq) and HCO 3 with Sarcosine Salt in Aqueous Solution
    journal, October 2012

    • Xiang, Qunyang; Fang, Mengxiang; Yu, Hai
    • The Journal of Physical Chemistry A, Vol. 116, Issue 42
    • DOI: 10.1021/jp305715q

    Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power
    journal, May 2018


    Simulation of carbon dioxide absorption by amino acids in two-phase batch and bubble column reactors
    journal, February 2019


    Carbon Dioxide Absorption Modeling for Off-Gas Treatment in the Nuclear Fuel Cycle
    journal, October 2018

    • Gabitto, Jorge; Tsouris, Costas
    • International Journal of Chemical Engineering, Vol. 2018
    • DOI: 10.1155/2018/3158147