skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Voltage gated inter-cation selective ion channels from graphene nanopores

Abstract

With the ability to selectively control ionic flux, biological protein ion channels perform a fundamental role in many physiological processes. For practical applications that require the functionality of a biological ion channel, graphene provides a promising solid-state alternative, due to its atomic thinness and mechanical strength. Here, we demonstrate that nanopores introduced into graphene membranes, as large as 50 nm in diameter, exhibit inter-cation selectivity with a ~20× preference for K+ over divalent cations and can be modulated by an applied gate voltage. Liquid atomic force microscopy of the graphene devices reveals surface nanobubbles near the pore to be responsible for the observed selective behavior. Molecular dynamics simulations indicate that translocation of ions across the pore likely occurs via a thin water layer at the edge of the pore and the nanobubble. Our results reflect a significant improvement in the inter-cation selectivity displayed by a solid-state nanopore device and by utilizing the pores in a de-wetted state, offers a method to fabricate selective graphene membranes that does not rely on the fabrication of sub-nm pores.

Authors:
ORCiD logo [1];  [2];  [1];  [3]; ORCiD logo [4];  [2];  [2];  [3]; ORCiD logo [4];  [2];  [1]
  1. Boston Univ., MA (United States)
  2. Lockheed Martin Advanced Technology Center (ATC), Palo Alto, CA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1531231
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 11; Journal Issue: 20; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; Graphene; membrane; nanopores; selective ion transport; conductance

Citation Formats

Cantley, Lauren, Swett, Jacob L., Lloyd, David, Cullen, David A., Zhou, Ke, Bedworth, Peter V., Heise, Scott, Rondinone, Adam J., Xu, Zhiping, Sinton, Steve, and Bunch, J. Scott. Voltage gated inter-cation selective ion channels from graphene nanopores. United States: N. p., 2019. Web. doi:10.1039/C8NR10360G.
Cantley, Lauren, Swett, Jacob L., Lloyd, David, Cullen, David A., Zhou, Ke, Bedworth, Peter V., Heise, Scott, Rondinone, Adam J., Xu, Zhiping, Sinton, Steve, & Bunch, J. Scott. Voltage gated inter-cation selective ion channels from graphene nanopores. United States. doi:10.1039/C8NR10360G.
Cantley, Lauren, Swett, Jacob L., Lloyd, David, Cullen, David A., Zhou, Ke, Bedworth, Peter V., Heise, Scott, Rondinone, Adam J., Xu, Zhiping, Sinton, Steve, and Bunch, J. Scott. Mon . "Voltage gated inter-cation selective ion channels from graphene nanopores". United States. doi:10.1039/C8NR10360G. https://www.osti.gov/servlets/purl/1531231.
@article{osti_1531231,
title = {Voltage gated inter-cation selective ion channels from graphene nanopores},
author = {Cantley, Lauren and Swett, Jacob L. and Lloyd, David and Cullen, David A. and Zhou, Ke and Bedworth, Peter V. and Heise, Scott and Rondinone, Adam J. and Xu, Zhiping and Sinton, Steve and Bunch, J. Scott},
abstractNote = {With the ability to selectively control ionic flux, biological protein ion channels perform a fundamental role in many physiological processes. For practical applications that require the functionality of a biological ion channel, graphene provides a promising solid-state alternative, due to its atomic thinness and mechanical strength. Here, we demonstrate that nanopores introduced into graphene membranes, as large as 50 nm in diameter, exhibit inter-cation selectivity with a ~20× preference for K+ over divalent cations and can be modulated by an applied gate voltage. Liquid atomic force microscopy of the graphene devices reveals surface nanobubbles near the pore to be responsible for the observed selective behavior. Molecular dynamics simulations indicate that translocation of ions across the pore likely occurs via a thin water layer at the edge of the pore and the nanobubble. Our results reflect a significant improvement in the inter-cation selectivity displayed by a solid-state nanopore device and by utilizing the pores in a de-wetted state, offers a method to fabricate selective graphene membranes that does not rely on the fabrication of sub-nm pores.},
doi = {10.1039/C8NR10360G},
journal = {Nanoscale},
number = 20,
volume = 11,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Engineered voltage-responsive nanopores
journal, January 2010

  • Siwy, Zuzanna S.; Howorka, Stefan
  • Chem. Soc. Rev., Vol. 39, Issue 3
  • DOI: 10.1039/B909105J

Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications
journal, February 2014


Gated proton transport in aligned mesoporous silica films
journal, February 2008

  • Fan, Rong; Huh, Seong; Yan, Ruoxue
  • Nature Materials, Vol. 7, Issue 4
  • DOI: 10.1038/nmat2127

Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores
journal, May 2009

  • Nam, Sung-Wook; Rooks, Michael J.; Kim, Ki-Bum
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl900309s

Electrostatic Control of Ions and Molecules in Nanofluidic Transistors
journal, May 2005

  • Karnik, Rohit; Fan, Rong; Yue, Min
  • Nano Letters, Vol. 5, Issue 5
  • DOI: 10.1021/nl050493b

Sub-10 nm transparent all-around-gated ambipolar ionic field effect transistor
journal, January 2015

  • Lee, Seung-Hyun; Lee, Hyomin; Jin, Tianguang
  • Nanoscale, Vol. 7, Issue 3
  • DOI: 10.1039/C4NR04089A

The structure of suspended graphene sheets
journal, March 2007

  • Meyer, Jannik C.; Geim, A. K.; Katsnelson, M. I.
  • Nature, Vol. 446, Issue 7131, p. 60-63
  • DOI: 10.1038/nature05545

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy
journal, January 2011

  • Chen, Shanshan; Brown, Lola; Levendorf, Mark
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn103028d

Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping
journal, July 2008

  • Liu, Li; Ryu, Sunmin; Tomasik, Michelle R.
  • Nano Letters, Vol. 8, Issue 7
  • DOI: 10.1021/nl0808684

Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes
journal, February 2014

  • O’Hern, Sean C.; Boutilier, Michael S. H.; Idrobo, Juan-Carlos
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404118f

Water desalination using nanoporous single-layer graphene
journal, March 2015

  • Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.
  • Nature Nanotechnology, Vol. 10, Issue 5
  • DOI: 10.1038/nnano.2015.37

Facile Fabrication of Large-Area Atomically Thin Membranes by Direct Synthesis of Graphene with Nanoscale Porosity
journal, October 2018

  • Kidambi, Piran R.; Nguyen, Giang D.; Zhang, Sui
  • Advanced Materials, Vol. 30, Issue 49
  • DOI: 10.1002/adma.201804977

Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films
journal, March 2010

  • Lee, Duck Hyun; Kim, Ji Eun; Han, Tae Hee
  • Advanced Materials, Vol. 22, Issue 11, p. 1247-1252
  • DOI: 10.1002/adma.200903063

DNA Origami Nanopatterning on Chemically Modified Graphene
journal, October 2011

  • Yun, Je Moon; Kim, Kyoung Nan; Kim, Ju Young
  • Angewandte Chemie, Vol. 124, Issue 4
  • DOI: 10.1002/ange.201106198

Self-Size-Limiting Nanoscale Perforation of Graphene for Dense Heteroatom Doping
journal, November 2015

  • Maiti, Uday Narayan; Thapa, Ranjit; Lim, Joonwon
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 46
  • DOI: 10.1021/acsami.5b08391

Selective molecular sieving through porous graphene
journal, October 2012

  • Koenig, Steven P.; Wang, Luda; Pellegrino, John
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.162

Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene
journal, April 2015


Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores
journal, October 2015

  • Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.
  • Nature Nanotechnology, Vol. 10, Issue 12
  • DOI: 10.1038/nnano.2015.222

Ion selectivity of graphene nanopores
journal, April 2016

  • Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11408

Extrinsic Cation Selectivity of 2D Membranes
journal, February 2017


Selective Ion Passage through Functionalized Graphene Nanopores
journal, December 2008

  • Sint, Kyaw; Wang, Boyang; Král, Petr
  • Journal of the American Chemical Society, Vol. 130, Issue 49, p. 16448-16449
  • DOI: 10.1021/ja804409f

Scalable graphene composite membranes for enhanced ion selectivity
journal, October 2018


Stacked Graphene-Al 2 O 3 Nanopore Sensors for Sensitive Detection of DNA and DNA–Protein Complexes
journal, December 2011

  • Venkatesan, Bala Murali; Estrada, David; Banerjee, Shouvik
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn203769e

Detecting the translocation of DNA through a nanopore using graphene nanoribbons
journal, November 2013

  • Traversi, F.; Raillon, C.; Benameur, S. M.
  • Nature Nanotechnology, Vol. 8, Issue 12
  • DOI: 10.1038/nnano.2013.240

Graphene as a subnanometre trans-electrode membrane
journal, August 2010

  • Garaj, S.; Hubbard, W.; Reina, A.
  • Nature, Vol. 467, Issue 7312, p. 190-193
  • DOI: 10.1038/nature09379

Nanobubbles in Solid-State Nanopores
journal, August 2006


Surface nanobubbles and nanodroplets
journal, August 2015


Study on the Surface Energy of Graphene by Contact Angle Measurements
journal, July 2014

  • Kozbial, Andrew; Li, Zhiting; Conaway, Caitlyn
  • Langmuir, Vol. 30, Issue 28
  • DOI: 10.1021/la5018328

Ultimate Osmosis Engineered by the Pore Geometry and Functionalization of Carbon Nanostructures
journal, June 2015

  • Song, Zhigong; Xu, Zhiping
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10597

Specific Ion Effects at the Air/Water Interface
journal, April 2006

  • Jungwirth, Pavel; Tobias, Douglas J.
  • Chemical Reviews, Vol. 106, Issue 4
  • DOI: 10.1021/cr0403741

The calculation of the potential of mean force using computer simulations
journal, September 1995


Differentiating between Nanoparticles and Nanobubbles by Evaluation of the Compressibility and Density of Nanoparticles
journal, August 2018

  • Alheshibri, Muidh; Craig, Vincent S. J.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 38
  • DOI: 10.1021/acs.jpcc.8b07174

DNA Origami Nanopatterning on Chemically Modified Graphene
journal, October 2011

  • Yun, Je Moon; Kim, Kyoung Nan; Kim, Ju Young
  • Angewandte Chemie International Edition, Vol. 51, Issue 4
  • DOI: 10.1002/anie.201106198