skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on May 31, 2020

Title: On the relative bias of void tracers in the Dark Energy Survey

Abstract

Luminous tracers of large-scale structure are not entirely representative of the distribution of mass in our Universe. As they arise from the highest peaks in the matter density field, the spatial distribution of luminous objects is biased towards those peaks. On large scales, where density fluctuations are mild, this bias simply amounts to a constant offset in the clustering amplitude of the tracer, known as linear bias. In this work we focus on the relative bias between galaxies and galaxy clusters that are located inside and in the vicinity of cosmic voids, extended regions of relatively low density in the large-scale structure of the Universe. With the help of mock data we verify that the relation between galaxy and cluster overdensity around voids remains linear. Hence, the void-centric density profiles of different tracers can be linked by a single multiplicative constant. This amounts to the same value as the relative linear bias between tracers for the largest voids in the sample. For voids of small sizes, which typically arise in higher density regions, this constant has a higher value, possibly showing an environmental dependence similar to that observed for the linear bias itself. We confirm our findings by analysing datamore » obtained during the first year of observations by the Dark Energy Survey. As a side product, we present the first catalogue of three-dimensional voids extracted from a photometric survey with a controlled photo-z uncertainty. Finally, our results will be relevant in forthcoming analyses that attempt to use voids as cosmological probes.« less

Authors:
 [1];  [2]; ORCiD logo [1];  [3];  [4];  [5];  [6];  [7];  [8];  [9]; ORCiD logo [10];  [11];  [12];  [13];  [6]; ORCiD logo [14];  [15];  [16];  [17];  [7] more »;  [14];  [18];  [19];  [20];  [9];  [13]; ORCiD logo [21];  [9];  [22];  [23];  [24];  [21];  [25]; ORCiD logo [6];  [14];  [9];  [26];  [27];  [28]; ORCiD logo [29];  [30];  [27];  [31];  [9];  [32]; ORCiD logo [7];  [19]; ORCiD logo [33];  [15];  [34]; ORCiD logo [35];  [36];  [18];  [9];  [37];  [38];  [18];  [39]; ORCiD logo [40];  [41]; ORCiD logo [42];  [38];  [8];  [9] « less
  1. Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching, Germany; Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany
  2. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany
  3. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany; Max-Planck-Institute for Astrophysics, Karl-Schwarzschild Strasse 1, D-85748 Garching, Germany
  4. Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching, Germany; Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany; Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany
  5. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  6. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  7. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  8. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  9. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  10. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  11. Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St, Pasadena, CA 91101, USA
  12. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France; Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France
  13. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  14. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  15. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA
  16. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  17. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA
  18. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  19. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  20. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  21. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  22. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  23. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  24. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  25. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany; Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  26. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  27. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  28. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  29. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany; Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany
  30. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  31. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  32. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
  33. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  34. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain; Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  35. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  36. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  37. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  38. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  39. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  40. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  41. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil; Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  42. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1531212
Alternate Identifier(s):
OSTI ID: 1526094
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 487; Journal Issue: 2; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; galaxies: clusters: general; large-scale structure of Universe; cosmology: observations

Citation Formats

Pollina, G., Hamaus, N., Paech, K., Dolag, K., Weller, J., Sánchez, C., Rykoff, E. S., Jain, B., Abbott, T. M. C., Allam, S., Avila, S., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Walker, A. R., and Wester, W. On the relative bias of void tracers in the Dark Energy Survey. United States: N. p., 2019. Web. doi:10.1093/mnras/stz1470.
Pollina, G., Hamaus, N., Paech, K., Dolag, K., Weller, J., Sánchez, C., Rykoff, E. S., Jain, B., Abbott, T. M. C., Allam, S., Avila, S., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Walker, A. R., & Wester, W. On the relative bias of void tracers in the Dark Energy Survey. United States. doi:10.1093/mnras/stz1470.
Pollina, G., Hamaus, N., Paech, K., Dolag, K., Weller, J., Sánchez, C., Rykoff, E. S., Jain, B., Abbott, T. M. C., Allam, S., Avila, S., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Walker, A. R., and Wester, W. Fri . "On the relative bias of void tracers in the Dark Energy Survey". United States. doi:10.1093/mnras/stz1470.
@article{osti_1531212,
title = {On the relative bias of void tracers in the Dark Energy Survey},
author = {Pollina, G. and Hamaus, N. and Paech, K. and Dolag, K. and Weller, J. and Sánchez, C. and Rykoff, E. S. and Jain, B. and Abbott, T. M. C. and Allam, S. and Avila, S. and Bernstein, R. A. and Bertin, E. and Brooks, D. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Cunha, C. E. and D’Andrea, C. B. and da Costa, L. N. and De Vicente, J. and DePoy, D. L. and Desai, S. and Diehl, H. T. and Doel, P. and Evrard, A. E. and Flaugher, B. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gerdes, D. W. and Giannantonio, T. and Gruen, D. and Gschwend, J. and Gutierrez, G. and Hartley, W. G. and Hollowood, D. L. and Honscheid, K. and Hoyle, B. and James, D. J. and Jeltema, T. and Kuehn, K. and Kuropatkin, N. and Lima, M. and March, M. and Marshall, J. L. and Melchior, P. and Menanteau, F. and Miquel, R. and Plazas, A. A. and Romer, A. K. and Sanchez, E. and Scarpine, V. and Schindler, R. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Tarle, G. and Walker, A. R. and Wester, W.},
abstractNote = {Luminous tracers of large-scale structure are not entirely representative of the distribution of mass in our Universe. As they arise from the highest peaks in the matter density field, the spatial distribution of luminous objects is biased towards those peaks. On large scales, where density fluctuations are mild, this bias simply amounts to a constant offset in the clustering amplitude of the tracer, known as linear bias. In this work we focus on the relative bias between galaxies and galaxy clusters that are located inside and in the vicinity of cosmic voids, extended regions of relatively low density in the large-scale structure of the Universe. With the help of mock data we verify that the relation between galaxy and cluster overdensity around voids remains linear. Hence, the void-centric density profiles of different tracers can be linked by a single multiplicative constant. This amounts to the same value as the relative linear bias between tracers for the largest voids in the sample. For voids of small sizes, which typically arise in higher density regions, this constant has a higher value, possibly showing an environmental dependence similar to that observed for the linear bias itself. We confirm our findings by analysing data obtained during the first year of observations by the Dark Energy Survey. As a side product, we present the first catalogue of three-dimensional voids extracted from a photometric survey with a controlled photo-z uncertainty. Finally, our results will be relevant in forthcoming analyses that attempt to use voids as cosmological probes.},
doi = {10.1093/mnras/stz1470},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 2,
volume = 487,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 31, 2020
Publisher's Version of Record

Save / Share: