Negative Thermal Expansion in (Hf,Ti)Fe 2 Induced by the Ferromagnetic and Antiferromagnetic Phase Coexistence
- Univ. of Science and Technology, Beijing (China)
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin (Germany)
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Chinese Academy of Sciences (CAS), Beijing (China)
Negative thermal expansion (NTE) is an intriguing physical phenomenon that can be used in the applications of thermal expansion adjustment of materials. In this study, we report a NTE compound of (Hf,Ti)Fe2, while both end members of HfFe2 and TiFe2 show positive thermal expansion. The results reveal that phase coexistence is detected in the whole NTE zone, in which one phase is ferromagnetic (FM), while the other is antiferromagnetic (AFM). With increasing temperature, the FM phase is gradually transformed to the AFM one. The NTE phenomenon occurs in the present (Hf,Ti)Fe2 because of the fact that the unit cell volume of the AFM phase is smaller than that of the FM phase, and the mass fraction of the AFM phase increases with increasing temperature. The construction of phase coexistence can be a method to achieve NTE materials in future studies.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1531169
- Journal Information:
- Inorganic Chemistry, Vol. 58, Issue 9; ISSN 0020-1669
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic (AFM)/ferroelectric (FE) and ferromagnetic (FM) orders in multiferroic TbMnO3 films, which can guide researchers in creating new kinds of multiferroic materials.
Collapse of ferromagnetism in itinerant-electron system: A magnetic, transport properties, and high pressure study of (Hf,Ta)Fe{sub 2} compounds