DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X-ray Absorption Spectroscopy

Abstract

As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge-charge reaction mechanism of the TiS2 electrode is still elusive. In this paper, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS2 during the discharge-charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS2 is partially reversible in the first cycle. However, Ti–O related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Finally, such understanding is important for the future design and optimizationmore » of TiS2 based electrodes for lithium batteries.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [3];  [4];  [1];  [1];  [1]; ORCiD logo [5]; ORCiD logo [6]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. National Tsing Hua Univ., Hsinchu (Taiwan)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tamkang Univ., Tamsui (Taiwan)
  4. Tamkang Univ., Tamsui (Taiwan)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Santa Cruz, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1530367
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 7; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE; Lithium ion batteries; TiS2; electronic structure; in situ and operando; X-ray absorption spectroscopy

Citation Formats

Zhang, Liang, Sun, Dan, Kang, Jun, Wang, Hsiao-Tsu, Hsieh, Shang-Hsien, Pong, Way-Faung, Bechtel, Hans A., Feng, Jun, Wang, Lin-Wang, Cairns, Elton J., and Guo, Jinghua. Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X-ray Absorption Spectroscopy. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b01680.
Zhang, Liang, Sun, Dan, Kang, Jun, Wang, Hsiao-Tsu, Hsieh, Shang-Hsien, Pong, Way-Faung, Bechtel, Hans A., Feng, Jun, Wang, Lin-Wang, Cairns, Elton J., & Guo, Jinghua. Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X-ray Absorption Spectroscopy. United States. https://doi.org/10.1021/acs.nanolett.8b01680
Zhang, Liang, Sun, Dan, Kang, Jun, Wang, Hsiao-Tsu, Hsieh, Shang-Hsien, Pong, Way-Faung, Bechtel, Hans A., Feng, Jun, Wang, Lin-Wang, Cairns, Elton J., and Guo, Jinghua. Fri . "Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X-ray Absorption Spectroscopy". United States. https://doi.org/10.1021/acs.nanolett.8b01680. https://www.osti.gov/servlets/purl/1530367.
@article{osti_1530367,
title = {Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X-ray Absorption Spectroscopy},
author = {Zhang, Liang and Sun, Dan and Kang, Jun and Wang, Hsiao-Tsu and Hsieh, Shang-Hsien and Pong, Way-Faung and Bechtel, Hans A. and Feng, Jun and Wang, Lin-Wang and Cairns, Elton J. and Guo, Jinghua},
abstractNote = {As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge-charge reaction mechanism of the TiS2 electrode is still elusive. In this paper, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS2 during the discharge-charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS2 is partially reversible in the first cycle. However, Ti–O related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Finally, such understanding is important for the future design and optimization of TiS2 based electrodes for lithium batteries.},
doi = {10.1021/acs.nanolett.8b01680},
journal = {Nano Letters},
number = 7,
volume = 18,
place = {United States},
year = {Fri Jun 01 00:00:00 EDT 2018},
month = {Fri Jun 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Discharge/charge voltage profiles, (b) cycling performance and Coulombic efficiency of TiS2 electrodes with a discharge cutoff voltage of 1.4 V. (c) Discharge/charge voltage profiles, (d) cycling performance and Coulombic efficiency of TiS2 electrodes with a discharge cutoff voltage of 0.05 V. The specific current is 0.2 A/g.

Save / Share:

Works referenced in this record:

Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries
journal, November 2017


Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity
journal, December 2017


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Recent Advances in Ultrathin Two-Dimensional Nanomaterials
journal, March 2017


Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis
journal, August 2017

  • Zhang, Yu; Zhou, Qian; Zhu, Jixin
  • Advanced Functional Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adfm.201702317

MoS 2 -Based Nanocomposites for Electrochemical Energy Storage
journal, December 2016


Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors
journal, December 2017


All-solid-state disordered LiTiS 2 pseudocapacitor
journal, January 2017

  • Whiteley, Justin M.; Hafner, Simon; Han, Sang Sub
  • Journal of Materials Chemistry A, Vol. 5, Issue 30
  • DOI: 10.1039/C7TA03756B

Unveiling two-dimensional TiS 2 as an insertion host for the construction of high energy Li-ion capacitors
journal, January 2017

  • Chaturvedi, Apoorva; Hu, Peng; Aravindan, Vanchiappan
  • Journal of Materials Chemistry A, Vol. 5, Issue 19
  • DOI: 10.1039/C7TA01594A

All-solid-state lithium-ion batteries with TiS 2 nanosheets and sulphide solid electrolytes
journal, January 2016

  • Oh, Dae Yang; Choi, Young Eun; Kim, Dong Hyeon
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA01628F

The lithium intercalates of the transition metal dichalcogenides
journal, May 1975


Hybrid Mg 2+ /Li + Battery with Long Cycle Life and High Rate Capability
journal, November 2014


High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries
journal, January 2011

  • Trevey, James E.; Stoldt, Conrad R.; Lee, Se-Hee
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.017112jes

TiS2–MWCNT hybrid as high performance anode in lithium-ion battery
journal, August 2013

  • Kartick, B.; Srivastava, Suneel Kumar; Mahanty, Sourindra
  • Journal of Nanoparticle Research, Vol. 15, Issue 9
  • DOI: 10.1007/s11051-013-1950-5

Fabrication of nanostructured silicon by metal-assisted etching and its effects on matrix-free laser desorption/ionization mass spectrometry
journal, February 2011


“Water-in-Salt” electrolyte enabled LiMn2O4/TiS2 Lithium-ion batteries
journal, September 2017


Electrochemical determination of the lithium ion diffusion coefficient in TiS2
journal, November 1981


Transition metal sulfides as cathodes for secondary lithium batteries—II. titanium sulfides
journal, June 1977


Dynamic X‐Ray Diffraction
journal, October 1978

  • Chianelli, R. R.; Scanlon, J. C.; Rao, B. M. L.
  • Journal of The Electrochemical Society, Vol. 125, Issue 10
  • DOI: 10.1149/1.2131244

Experimental and theoretical studies of the electronic structure of Ti S 2
journal, October 1996


Sulfur K -Edge X-Ray-Absorption Study of the Charge Transfer upon Lithium Intercalation into Titanium Disulfide
journal, September 1996


Electronic structures and charge transfer in lithium and mercury intercalated titanium disulfides
journal, June 1996


State-of-the-art characterization techniques for advanced lithium-ion batteries
journal, March 2017


Application of Synchrotron Radiation Technologies to Electrode Materials for Li- and Na-Ion Batteries
journal, July 2017

  • Huang, Weifeng; Marcelli, Augusto; Xia, Dingguo
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201700460

Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries
journal, September 2017


Li Intercalation into 1D TiS 2 (en) Chains
journal, February 2014

  • Li, Tianyang; Liu, Yi-Hsin; Chitara, Basant
  • Journal of the American Chemical Society, Vol. 136, Issue 8
  • DOI: 10.1021/ja4132399

Phase evolution for conversion reaction electrodes in lithium-ion batteries
journal, February 2014

  • Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4358

In Situ X-Ray Absorption Spectroscopic Study of Li[sub 1.05]Ni[sub 0.35]Co[sub 0.25]Mn[sub 0.4]O[sub 2] Cathode Material Coated with LiCoO[sub 2]
journal, January 2007

  • Deb, Aniruddha; Bergmann, Uwe; Cramer, Stephen P.
  • Journal of The Electrochemical Society, Vol. 154, Issue 6
  • DOI: 10.1149/1.2720762

Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide
journal, July 2017

  • Bak, Seong-Min; Qiao, Ruimin; Yang, Wanli
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201700959

In Situ Electrochemistry of Rechargeable Battery Materials: Status Report and Perspectives
journal, June 2017


In Situ X-ray Absorption Spectroscopic Study on LiNi 0.5 Mn 0.5 O 2 Cathode Material during Electrochemical Cycling
journal, August 2003

  • Yoon, Won-Sub; Grey, Clare P.; Balasubramanian, Mahalingam
  • Chemistry of Materials, Vol. 15, Issue 16
  • DOI: 10.1021/cm030220m

First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage
journal, July 2016


The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase
journal, January 2009

  • Borghols, W. J. H.; Lützenkirchen-Hecht, D.; Haake, U.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 27
  • DOI: 10.1039/b823142g

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions (Adv. Mater. 35/2010)
journal, September 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201090116

Catalytic oxidation of Li 2 S on the surface of metal sulfides for Li−S batteries
journal, January 2017

  • Zhou, Guangmin; Tian, Hongzhen; Jin, Yang
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 5
  • DOI: 10.1073/pnas.1615837114

Sulfiphilic Nickel Phosphosulfide Enabled Li 2 S Impregnation in 3D Graphene Cages for Li-S Batteries
journal, January 2017


Amorphous Metal Polysulfides: Electrode Materials with Unique Insertion/Extraction Reactions
journal, June 2017

  • Sakuda, Atsushi; Ohara, Koji; Fukuda, Katsutoshi
  • Journal of the American Chemical Society, Vol. 139, Issue 26
  • DOI: 10.1021/jacs.7b03909

Electrochemically Induced High Capacity Displacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium
journal, May 2011

  • Xiao, Jie; Wang, Xiaojian; Yang, Xiao-Qing
  • Advanced Functional Materials, Vol. 21, Issue 15
  • DOI: 10.1002/adfm.201002752

Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide
journal, June 2015

  • Britto, Sylvia; Leskes, Michal; Hua, Xiao
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b03395

Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy
journal, January 2016

  • Gorlin, Yelena; Patel, Manu U. M.; Freiberg, Anna
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0631606jes

Lithium ion battery applications of molybdenum disulfide (MoS 2 ) nanocomposites
journal, January 2014

  • Stephenson, Tyler; Li, Zhi; Olsen, Brian
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42591F

Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices
journal, August 2007

  • Badway, F.; Mansour, A. N.; Pereira, N.
  • Chemistry of Materials, Vol. 19, Issue 17, p. 4129-4141
  • DOI: 10.1021/cm070421g

Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes
journal, November 2011

  • Wang, Feng; Robert, Rosa; Chernova, Natasha A.
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja206268a

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes
journal, December 2015


Unstable Single‐Layered Colloidal TiS 2 Nanodisks
journal, July 2008


Evaluation of High-Resolution X-ray Absorption and Emission Spectroscopy for the Chemical Speciation of Binary Titanium Compounds
journal, March 2009

  • Reinhardt, F.; Beckhoff, B.; Eba, H.
  • Analytical Chemistry, Vol. 81, Issue 5
  • DOI: 10.1021/ac8018069

Phase Transformations in TiS 2 during K Intercalation
journal, July 2017


Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries
journal, August 2017


Layered TiS 2 Positive Electrode for Mg Batteries
journal, June 2016


Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
journal, July 2017


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Projector augmented-wave method
journal, December 1994


Van der Waals density functionals applied to solids
journal, May 2011


Works referencing / citing this record:

Structural characterization of an amorphous VS 4 and its lithiation/delithiation behavior studied by solid-state NMR spectroscopy
journal, January 2019

  • Shimoda, Keiji; Koganei, Kazuto; Takeuchi, Tomonari
  • RSC Advances, Vol. 9, Issue 41
  • DOI: 10.1039/c9ra04338a

The development of 2D materials for electrochemical energy applications: A mechanistic approach
journal, March 2019

  • Hynek, David J.; Pondick, Joshua V.; Cha, Judy J.
  • APL Materials, Vol. 7, Issue 3
  • DOI: 10.1063/1.5085187

CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite
journal, May 2019


Solvent exfoliation stabilizes TiS 2 nanosheets against oxidation, facilitating lithium storage applications
journal, January 2019

  • Vega-Mayoral, Victor; Tian, Ruiyuan; Kelly, Adam G.
  • Nanoscale, Vol. 11, Issue 13
  • DOI: 10.1039/c8nr09446b

Exploring the bottlenecks of anionic redox in Li-rich layered sulfides
journal, November 2019


Sulfide cluster vacancies inducing an electrochemical reversibility improvement of titanium disulfide electrode material
journal, January 2020

  • Lu, Jianhao; Lian, Fang; Zhang, Yuxuan
  • Journal of Materials Chemistry A, Vol. 8, Issue 14
  • DOI: 10.1039/c9ta12631g

Atomic Sn 4+ Decorated into Vanadium Carbide MXene Interlayers for Superior Lithium Storage
journal, December 2018

  • Wang, Changda; Chen, Shuangming; Xie, Hui
  • Advanced Energy Materials, Vol. 9, Issue 4
  • DOI: 10.1002/aenm.201802977

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.