DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials

Abstract

There is an urgent need for low-cost, resource-friendly, high-energy-density cathode materials for lithium-ion batteries to satisfy the rapidly increasing need for electrical energy storage. To replace the nickel and cobalt, which are limited resources and are associated with safety problems, in current lithium-ion batteries, high-capacity cathodes based on manganese would be particularly desirable owing to the low cost and high abundance of the metal, and the intrinsic stability of the Mn4+ oxidation state. Here we present a strategy of combining high-valent cations and the partial substitution of fluorine for oxygen in a disordered-rocksalt structure to incorporate the reversible Mn2+/Mn4+ double redox couple into lithium-excess cathode materials. The lithium-rich cathodes thus produced have high capacity and energy density. The use of the Mn2+/Mn4+ redox reduces oxygen redox activity, thereby stabilizing the materials, and opens up new opportunities for the design of high-performance manganese-rich cathodes for advanced lithium-ion batteries.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [1];  [1];  [1];  [6];  [7];  [3];  [8]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  3. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division. Advanced Photon Source
  4. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source
  6. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source; Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry
  8. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1461423
Alternate Identifier(s):
OSTI ID: 1530348
Grant/Contract Number:  
AC02-06CH11357; AC02-05CH11231; ACI-1548562; DGE-1106400; DMR-1720256
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 556; Journal Issue: 7700; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; atomistic models; batteries

Citation Formats

Lee, Jinhyuk, Kitchaev, Daniil A., Kwon, Deok-Hwang, Lee, Chang-Wook, Papp, Joseph K., Liu, Yi-Sheng, Lun, Zhengyan, Clement, Raphaele J., Shi, Tan, McCloskey, Bryan D., Guo, Jinghua, Balasubramanian, Mahalingam, and Ceder, Gerbrand. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. United States: N. p., 2018. Web. doi:10.1038/s41586-018-0015-4.
Lee, Jinhyuk, Kitchaev, Daniil A., Kwon, Deok-Hwang, Lee, Chang-Wook, Papp, Joseph K., Liu, Yi-Sheng, Lun, Zhengyan, Clement, Raphaele J., Shi, Tan, McCloskey, Bryan D., Guo, Jinghua, Balasubramanian, Mahalingam, & Ceder, Gerbrand. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. United States. https://doi.org/10.1038/s41586-018-0015-4
Lee, Jinhyuk, Kitchaev, Daniil A., Kwon, Deok-Hwang, Lee, Chang-Wook, Papp, Joseph K., Liu, Yi-Sheng, Lun, Zhengyan, Clement, Raphaele J., Shi, Tan, McCloskey, Bryan D., Guo, Jinghua, Balasubramanian, Mahalingam, and Ceder, Gerbrand. Wed . "Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials". United States. https://doi.org/10.1038/s41586-018-0015-4. https://www.osti.gov/servlets/purl/1461423.
@article{osti_1461423,
title = {Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials},
author = {Lee, Jinhyuk and Kitchaev, Daniil A. and Kwon, Deok-Hwang and Lee, Chang-Wook and Papp, Joseph K. and Liu, Yi-Sheng and Lun, Zhengyan and Clement, Raphaele J. and Shi, Tan and McCloskey, Bryan D. and Guo, Jinghua and Balasubramanian, Mahalingam and Ceder, Gerbrand},
abstractNote = {There is an urgent need for low-cost, resource-friendly, high-energy-density cathode materials for lithium-ion batteries to satisfy the rapidly increasing need for electrical energy storage. To replace the nickel and cobalt, which are limited resources and are associated with safety problems, in current lithium-ion batteries, high-capacity cathodes based on manganese would be particularly desirable owing to the low cost and high abundance of the metal, and the intrinsic stability of the Mn4+ oxidation state. Here we present a strategy of combining high-valent cations and the partial substitution of fluorine for oxygen in a disordered-rocksalt structure to incorporate the reversible Mn2+/Mn4+ double redox couple into lithium-excess cathode materials. The lithium-rich cathodes thus produced have high capacity and energy density. The use of the Mn2+/Mn4+ redox reduces oxygen redox activity, thereby stabilizing the materials, and opens up new opportunities for the design of high-performance manganese-rich cathodes for advanced lithium-ion batteries.},
doi = {10.1038/s41586-018-0015-4},
journal = {Nature (London)},
number = 7700,
volume = 556,
place = {United States},
year = {Wed Apr 11 00:00:00 EDT 2018},
month = {Wed Apr 11 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 441 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Charge self-regulation upon changing the oxidation state of transition metals in insulators
journal, June 2008

  • Raebiger, Hannes; Lany, Stephan; Zunger, Alex
  • Nature, Vol. 453, Issue 7196
  • DOI: 10.1038/nature07009

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Characterization of Different Precursors and Activated Vanadium Phosphate Catalysis by 31P NMR Spin Echo Mapping
journal, July 1994

  • Sananes, M. T.; Tuel, A.; Hutchings, G. J.
  • Journal of Catalysis, Vol. 148, Issue 1
  • DOI: 10.1006/jcat.1994.1221

Electrochemical extraction of lithium from LiMn2O4
journal, February 1984


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses
journal, July 2008

  • Chalmin, E.; Farges, F.; Brown, G. E.
  • Contributions to Mineralogy and Petrology, Vol. 157, Issue 1
  • DOI: 10.1007/s00410-008-0323-z

Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Lithium-Excess Cation-Disordered Rocksalt-Type Oxide with Nanoscale Phase Segregation: Li 1.25 Nb 0.25 V 0.5 O 2
journal, July 2017


Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries
journal, January 2016

  • Hy, Sunny; Liu, Haodong; Zhang, Minghao
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03573B

QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra
journal, October 2008


Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries
journal, January 2017

  • Xie, Y.; Saubanère, M.; Doublet, M. -L.
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02328B

A manganese oxyiodide cathode for rechargeable lithium batteries
journal, November 1997

  • Kim, Jaekook; Manthiram, Arumugam
  • Nature, Vol. 390, Issue 6657
  • DOI: 10.1038/36812

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Density Functional Theory-Based Bond Pathway Decompositions of Hyperfine Shifts: Equipping Solid-State NMR to Characterize Atomic Environments in Paramagnetic Materials
journal, April 2013

  • Middlemiss, Derek S.; Ilott, Andrew J.; Clément, Raphaële J.
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400201t

Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Frequency-stepped acquisition in nuclear magnetic resonance spectroscopy under magic angle spinning
journal, March 2013

  • Pell, Andrew J.; Clément, Raphaële J.; Grey, Clare P.
  • The Journal of Chemical Physics, Vol. 138, Issue 11
  • DOI: 10.1063/1.4795001

71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions
journal, May 1995

  • Massiot, Dominique; Farnan, Ian; Gautier, Nathalie
  • Solid State Nuclear Magnetic Resonance, Vol. 4, Issue 4
  • DOI: 10.1016/0926-2040(95)00002-8

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Li-ion battery materials: present and future
journal, June 2015


Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density
journal, January 2013

  • Bettge, Martin; Li, Yan; Gallagher, Kevin
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.034311jes

Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li + Intercalation Storage
journal, February 2015

  • Chen, Ruiyong; Ren, Shuhua; Knapp, Michael
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201401814

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides
journal, October 2017


Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4 coating
journal, January 2001

  • Cho, Jaephil; Kim, Tae-Joon; Kim, Yong Jeong
  • Chemical Communications, Issue 12
  • DOI: 10.1039/b101677f

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

Oxygen 1 s x-ray-absorption edges of transition-metal oxides
journal, September 1989


A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides
journal, January 2015

  • Lee, Jinhyuk; Seo, Dong-Hwa; Balasubramanian, Mahalingam
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE02329G

Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy
journal, May 2012

  • Manceau, A.; Marcus, M. A.; Grangeon, S.
  • American Mineralogist, Vol. 97, Issue 5-6
  • DOI: 10.2138/am.2012.3903

Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO 2 – x LiF (0 ≤ x ≤ 2) binary system
journal, November 2017


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Electrode/Electrolyte Interface Studies in Lithium Batteries Using NMR
journal, January 2011

  • Dupre, N.; Cuisinier, M.; Guyomard, D.
  • Interface magazine, Vol. 20, Issue 3
  • DOI: 10.1149/2.F06113if

On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Design of Li 1+2x Zn 1−x PS 4 , a new lithium ion conductor
journal, January 2016

  • Richards, William D.; Wang, Yan; Miara, Lincoln J.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02094A

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides
journal, July 2016


A new active Li–Mn–O compound for high energy density Li-ion batteries
journal, November 2015

  • Freire, M.; Kosova, N. V.; Jordy, C.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4479

STRUCTURAL ENVIRONMENT OF Nb5+ IN DRY AND FLUID-RICH (H2O, F) SILICATE GLASSES: A COMBINED XANES AND EXAFS STUDY
journal, June 2006


The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes
journal, May 2014

  • Urban, Alexander; Lee, Jinhyuk; Ceder, Gerbrand
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201400478

Coordination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds
journal, August 1996


Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals
journal, October 2017


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Layered Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries
journal, January 2001

  • Lu, Zhonghua; MacNeil, D. D.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 12
  • DOI: 10.1149/1.1413182

Key electronic states in lithium battery materials probed by soft X-ray spectroscopy
journal, October 2013

  • Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 190
  • DOI: 10.1016/j.elspec.2013.03.008

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials
journal, October 2017


Lithium Batteries and Cathode Materials
journal, December 2004


Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction
journal, April 2020


Works referencing / citing this record:

Synchronous Tailoring Surface Structure and Chemical Composition of Li-Rich-Layered Oxide for High-Energy Lithium-Ion Batteries
journal, August 2018

  • Wu, Bing; Yang, Xiukang; Jiang, Xia
  • Advanced Functional Materials, Vol. 28, Issue 37
  • DOI: 10.1002/adfm.201803392

Tuning Anionic Redox Activity and Reversibility for a High‐Capacity Li‐Rich Mn‐Based Oxide Cathode via an Integrated Strategy
journal, March 2019

  • Li, Qingyuan; Zhou, Dong; Zhang, Lijuan
  • Advanced Functional Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adfm.201806706

Evolution of Local Structural Ordering and Chemical Distribution upon Delithiation of a Rock Salt–Structured Li 1.3 Ta 0.3 Mn 0.4 O 2 Cathode
journal, February 2019

  • Kan, Wang Hay; Wei, Chenxi; Chen, Dongchang
  • Advanced Functional Materials, Vol. 29, Issue 17
  • DOI: 10.1002/adfm.201808294

Grain-Boundary-Induced Drastic Sensing Performance Enhancement of Polycrystalline-Microwire Printed Gas Sensors
journal, November 2018


Heteroanionic Materials by Design: Progress Toward Targeted Properties
journal, March 2019

  • Harada, Jaye K.; Charles, Nenian; Poeppelmeier, Kenneth R.
  • Advanced Materials, Vol. 31, Issue 19
  • DOI: 10.1002/adma.201805295

A New Type of Li‐Rich Rock‐Salt Oxide Li 2 Ni 1/3 Ru 2/3 O 3 with Reversible Anionic Redox Chemistry
journal, January 2019


A Novel NASICON‐Type Na 4 MnCr(PO 4 ) 3 Demonstrating the Energy Density Record of Phosphate Cathodes for Sodium‐Ion Batteries
journal, February 2020


Uniform Na + Doping‐Induced Defects in Li‐ and Mn‐Rich Cathodes for High‐Performance Lithium‐Ion Batteries
journal, May 2019


Interweaving 3D Network Binder for High-Areal-Capacity Si Anode through Combined Hard and Soft Polymers
journal, November 2018

  • Liu, Tiefeng; Chu, Qiaoling; Yan, Cheng
  • Advanced Energy Materials, Vol. 9, Issue 3
  • DOI: 10.1002/aenm.201802645

Understanding Performance Degradation in Cation‐Disordered Rock‐Salt Oxide Cathodes
journal, July 2019

  • Chen, Dongchang; Kan, Wang Hay; Chen, Guoying
  • Advanced Energy Materials, Vol. 9, Issue 31
  • DOI: 10.1002/aenm.201901255

Controlled Atomic Solubility in Mn‐Rich Composite Material to Achieve Superior Electrochemical Performance for Li‐Ion Batteries
journal, December 2019

  • Lee, Junghwa; Zhang, Qinghua; Kim, Jieun
  • Advanced Energy Materials, Vol. 10, Issue 5
  • DOI: 10.1002/aenm.201902231

There and Back Again-The Journey of LiNiO 2 as a Cathode Active Material
journal, May 2019

  • Bianchini, Matteo; Roca-Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201812472

Advances in the Cathode Materials for Lithium Rechargeable Batteries
journal, February 2020

  • Lee, Wontae; Muhammad, Shoaib; Sergey, Chernov
  • Angewandte Chemie International Edition, Vol. 59, Issue 7
  • DOI: 10.1002/anie.201902359

In Situ Probing Multiple-Scale Structures of Energy Materials for Li-Ion Batteries
journal, May 2019


Ten years left to redesign lithium-ion batteries
journal, July 2018


Aligning academia and industry for unified battery performance metrics
journal, December 2018


Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries
journal, February 2019


Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage
journal, April 2019


Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries
journal, July 2019


Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite
journal, October 2019


Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides
journal, November 2019


All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents
journal, October 2019


Exploring the bottlenecks of anionic redox in Li-rich layered sulfides
journal, November 2019


Ultrahigh power and energy density in partially ordered lithium-ion cathode materials
journal, March 2020


Unified picture of anionic redox in Li/Na-ion batteries
journal, March 2019


Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite
journal, May 2019


Al 2 O 3 -coated Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 nanotubes as cathode materials for high-performance lithium-ion batteries
journal, January 2019

  • Chen, Yangwen; Wang, Xinchang; Zhang, Jiajia
  • RSC Advances, Vol. 9, Issue 4
  • DOI: 10.1039/c8ra09428d

Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes
journal, January 2018

  • Ye, Changchun; Tu, Wenqiang; Yin, Limei
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta06150e

A high performance SnO 2 /C nanocomposite cathode for aluminum-ion batteries
journal, January 2019

  • Lu, Hongyan; Wan, Yuanxin; Wang, Tianyi
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c8ta11132d

Exploring the origin of electrochemical performance of Cr-doped LiNi 0.5 Mn 1.5 O 4
journal, January 2020

  • Li, Fei; Ma, Jiani; Lin, Jianyan
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 7
  • DOI: 10.1039/c9cp06545h

A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries
journal, January 2019

  • Tian, Yuan; An, Yongling; Xiong, Shenglin
  • Journal of Materials Chemistry A, Vol. 7, Issue 16
  • DOI: 10.1039/c9ta02233c

Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries
journal, January 2019

  • An, Yongling; Tian, Yuan; Li, Yuan
  • Journal of Materials Chemistry A, Vol. 7, Issue 38
  • DOI: 10.1039/c9ta08721d

FeP 3 monolayer as a high-efficiency catalyst for hydrogen evolution reaction
journal, January 2019

  • Zheng, Shuang; Yu, Tong; Lin, Jianyan
  • Journal of Materials Chemistry A, Vol. 7, Issue 44
  • DOI: 10.1039/c9ta09985a

Charge-transfer descriptor for the cycle performance of β-Li 2 MO 3 cathodes: role of oxygen dimers
journal, January 2020

  • Kim, Inkyung; Do, Joongyeop; Kim, Heejin
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/c9ta12426h

Non-stoichiometric defect-controlled reduction toward mixed-valence Mn-doped hexaaluminates and their optical applications
journal, January 2019

  • Hu, Jieqi; Song, Enhai; Zhou, Yayun
  • Journal of Materials Chemistry C, Vol. 7, Issue 19
  • DOI: 10.1039/c9tc01026b

Electrochemical trapping of metastable Mn 3+ ions for activation of MnO 2 oxygen evolution catalysts
journal, May 2018

  • Morgan Chan, Zamyla; Kitchaev, Daniil A.; Nelson Weker, Johanna
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1722235115

Enhanced Electrochemical Properties of LiNi 0.8 Co 0.1 Mn 0.1 O 2 at Elevated Temperature by Simultaneous Structure and Interface Regulating
journal, January 2019

  • Feng, Ze; Huang, Xiaobing; Rajagopalan, Ranjusha
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0331908jes

Ultrathin Al2O3 Coating on LiNi0.8Co0.1Mn0.1O2 Cathode Material for Enhanced Cycleability at Extended Voltage Ranges
journal, February 2019


Scavenging Materials to Stabilize LiPF 6 ‐Containing Carbonate‐Based Electrolytes for Li‐Ion Batteries
journal, November 2018


Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies
journal, December 2019

  • Liang, Longwei; Zhang, Wenheng; Zhao, Fei
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901749

Ethylene Carbonate‐Free Electrolytes for High‐Nickel Layered Oxide Cathodes in Lithium‐Ion Batteries
journal, June 2019

  • Li, Wangda; Dolocan, Andrei; Li, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 29
  • DOI: 10.1002/aenm.201901152

Li 2 O:Li–Mn–O Disordered Rock‐Salt Nanocomposites as Cathode Prelithiation Additives for High‐Energy Density Li‐Ion Batteries
journal, January 2020

  • Diaz‐Lopez, Maria; Chater, Philip A.; Bordet, Pierre
  • Advanced Energy Materials, Vol. 10, Issue 7
  • DOI: 10.1002/aenm.201902788

Effect of Fluorination on Lithium Transport and Short‐Range Order in Disordered‐Rocksalt‐Type Lithium‐Ion Battery Cathodes
journal, March 2020

  • Ouyang, Bin; Artrith, Nongnuch; Lun, Zhengyan
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903240

Hin und zurück – die Entwicklung von LiNiO 2 als Kathodenaktivmaterial
journal, May 2019

  • Bianchini, Matteo; Roca‐Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie, Vol. 131, Issue 31
  • DOI: 10.1002/ange.201812472

Kathodenmaterialien für wiederaufladbare Lithiumbatterien
journal, November 2019

  • Lee, Wontae; Muhammad, Shoaib; Sergey, Chernov
  • Angewandte Chemie, Vol. 132, Issue 7
  • DOI: 10.1002/ange.201902359

Volatility drivers on the metal market and exposure of producing countries
journal, August 2019


Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries
journal, November 2018


High-rate capability and long-term cycling of self-assembled hierarchical Fe 3 O 4 /carbon hollow spheres through interfacial control
journal, January 2019

  • Huang, Jing; Cheng, Songpu; Chen, Yuxi
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04041b

Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides.
text, January 2019

  • Hua, Weibo; Wang, Suning; Knapp, Michael
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.47412

Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries
other, January 2019

  • Wang, Qingsong; Sarkar, Abhishek; Wang, Di
  • Cambridge : Royal Society of Chemistry
  • DOI: 10.15488/9843

Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries
other, January 2019

  • Wang, Qingsong; Sarkar, Abhishek; Wang, Di
  • Cambridge : RSC
  • DOI: 10.15488/10767

Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides
text, January 2019

  • Hua, Weibo; Wang, Suning; Knapp, Michael
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.60446

Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides
text, January 2019

  • Hua, Weibo; Wang, Suning; Knapp, Michael
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-04472